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People who deny the existence of dragons are

often eaten by dragons. From within.
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Résumé long

Ce résumé est une traduction depuis I’anglais de certains passages de I'introduction ainsi
que des passages des introductions de chacun des chapitres.

Cette thése étudie la propriété Calabi—Yau fractionnaire, qui ici, aura trait a la théorie
des représentations, appliquée a des ensembles ordonnés, en considérant des exemples liés
a la Théorie de Lie de plusieurs fagon différentes. Les ensembles ordonnés apparaissent
naturellement dans beaucoup de domaines des mathématiques. Depuis 'ordre sur les
entier relatifs jusqu’a l'optimisation des produits de matrices, les ordres nous permet-
tent d’organiser des objets souvent de maniére canonique, bien que rarement unique. La
théorie des représentations est une branche des mathématiques qui traduit des structures
algébriques abstraite en algébre linéaire. Son exploration débute au dix-neuviéme sie-
cle avec I’étude des groupes symétriques agissant sur des ensembles. A travers I’algeébre
d’incidence d’un ensemble ordonné, on peut appliquer les idées fécondes de la théorie des
représentations aux ensembles ordonnés. Simultanément, ’algebre d’incidence d'un en-
semble ordonné fini a des propriétés qui rendent sa théorie des représentations plus simple
a décrire combinatoirement. De nombreux objets centraux de la théorie des représenta-
tions sont apparus d’abord en théorie de Lie. Il s’agit d'une vaste branche des mathéma-
tiques a l'intersection de la géométrie, de la théorie des représentations et de la résolu-
tion d’équations différentielles partielles dont une motivation centrale est de décrire des
phénomeénes physiques. Dans les années mille neuf-cent quarante, des objets au centre de
la théorie de Lie, les groupes de Lie compacts et le algébres de Lie semi simples, ont été
classifiés a l'aide de systémes de racines que 'ont peut encoder par des diagrammes dit de
Dynkin. La proprieté Calabi—Yau fractionnaire vient d’un autre domaine de la physique

et exprime ’absence de courbure de variétés qui apparaissent en relativité générale.

0.1 Prolégoméne

Dans le Chapitre [2 on présente le contexte nécessaire a la compréhension du manuscript,

c’est a dire la théorie des représentations des ensembles ordonnés.
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La Section [2.1] permet d’évoquer les fondements algébriques et combinatoires de celle-
ci. On commence par fixer des notations et des conventions de la théorie des représen-
tations des carquois, dans laquelle notre travail sur les algebres d’incidence d’ensembles or-
donnés s’inscrit naturellement. On évoque ensuite quelques notions de la théorie d’Auslander—
Reiten. On termine cette section par une discussion des différentes notions de dimension
d’un ensemble ordonné. Les mathématiques présentées dans cette section datent au plus
tard des années 1970. Depuis, de nombreux progrés ont émergé au sein de chacun des
domaines évoqués. Les Sections et relatent certains de ces progres.

Dans la Section on rappel la construction de la catégorie dérivée d’une catégorie
abélienne, sa structure triangulée, puis on discute de foncteurs importants. Les résultats
de cette section remontent au plus tard aux années 1990. Un lemme classique sur les
morphismes de triangles sera utilisé de fagon cruciale dans la preuve du Théoréme principal
du Chapitre [3]

La Section est une courte présentation de la théorie d’Auslander supérieure qui a
été développée dans les années 2000. Notre but est de d’introduire 1'algébre d’Auslander
supérieure de type A qui joue un role centrale dans les résultats du Chapitre [f

L’auteure est temtée de dire que le passage a la catégorie dérivée et la theorie d’ Auslander
supérieure sont deux fagons d’étendre la théorie des représentations classique. On peut
dire que la premiére est devenue nécessaire lorsqu’on a voulu remplacer les modules par
leurs résolutions projectives alors que la seconde répond a des questions naturelles comme
"que ce passe-t-il lorsque 'on remplace un 1 (caché dans certaines formulations) par un

n'.

Cependant, la théorie d’Auslander supérieure & été développée aprés les aspects
dérivés de la théorie des représentations et donc est fermement ancrée dans ce contexte.
Certains aspects de la théorie des représentations contemporaine n’apparaissent pas
dans ce manuscript, comme 'importance de la théorie des amas, le fait que les catégories
triangulées sont maintenant souvent remplacées ou renforcées par des structures plus
robustes que sont les dg—catégories, et I'importance croissante que prend le language des
infini-catégories.
Enfin, dans la Section [2.4] on décrit la conjecture de Chapoton qui motive une grande

partie du travail présenté dans cette thése.

0.2 Reésultats

Cette thése contient deux types de résultats. D’une part, nous présentons des résultats
qui ont traits soit aux treillis finis en toute généralités, soit aux treillis join-semiditributifs,

en espérant que ces résultats puissent servir d’outils a d’autre chercheureuse. Dans un
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deuxiéme temps, nous appliquons ces résultats a I’étude d’une famille de treillis partic-
uliére dans le but de corroborer une conjecture de Chapoton. Au coeur de I’ensemble de
ces résultats, il y a I’étude des antichaines dans les treillis et des représentations qu’elles

décrivent

0.2.1 Dimension globale de treillis join-semidistributifs

Les antichaines apparaissent naturellement dans la théorie des représentations des en-
sembles ordonnés car elles permettent de décrire les sous modules des modules projectifs
indécomposables et de 14, les modules a téte simple [37]. Lorsque I’ensemble ordonné est
un treillis, ces modules a téte simple admettent une resolution projective canonique [37]
mais pas toujours minimale, décrite par les sous ensembles de I’antichaine correspondante.
Dans le Chapitre [3| nous identifions quatre types d’antichaines : les antichaines intersec-
tives, les antichains inclusives, les antichaines fortes et les antichaines booléennes. Nous
établissons des liens entre ces propriétés (Lemme . Nous montrons qu’une antichaine
est booléenne si et seulement si elle engendre un sous treillis qui est booléen, ce qui justi-
fie ce choix de terminologie et constitue 'intérét de ces antichaines. La Proposition
établie que la résolution canonique d’un module d’antichaine défini par une antichaine
forte est une réolution minimale ce qui constitue a son tour, l'intérét des antichaines
fortes. Cela nous permet de démontrer le Corollaire qui généralise un résultat de
[37] sur les treillis distributifs aux treillis joints semi distributifs: leur dimension globale

ne dépend pas du corps de base choisi.

0.2.2 Détection de catégories Calabi—Yau fractionnaires

La notion de catégorie Calabi-Yau fractionnaire fut introduite par Kontsevich a la fin des
années 1990 [42, Definition 28]. Une catégorie triangulée 7 avec un foncteur de Serre S
est dite Calabi-Yau fractionnaire s’il existe des entiers [ et d telle que S' est isomorphe
comme foncteur au foncteur suspension de 7 appliqué d fois. Dans ce cas on dit que
T est 4-Calabi-Yau fractionnaire. Quand 7 = D(A), la catégorie dérivée bornée d'une
algebre de dimension fini A sur un corps k, le foncteur de Nakayama dérivé, S = DA®%L?,
est un foncteur de Serre. Dans ce cas, la propriété Calabi-Yau fractionnaire peut étre
étendue. Si ¢ est un automorphisme de A on dit que D°(A) est Calabi-Yau fractionnaire
tordue quand S! ~ [d] o ¢*, ou ¢* tord I'action de A sur un module par ¢. Pour montrer
qu'une algébre est Calabi—Yau fractionnaire tordue, il suffit, de montrer que 'on a un
isomorphisme

S' A ~ A[d]



dans DP(A) |31, Proposition 4.3]. La question de savoir si toutes les algébres de di-
mension globale finie Calabi-Yau fractionnaires tordues sont Calabi-Yau fractionnaires
est ouverte [31, Remark 1.6]. Pour les ensembles ordonnés finis avec un unique maxi-
mum ou un unique minimum, le Théoréme [51, Theorem 3.1] offre une réponse positive
a cette question. Ce Théoréme affirme en particulier, que la propriété Calabi-Yau frac-
tionnaire peut se vérifier sur les modules projectifs indécomposables. Cependant, étant
donnée 'algebre d’incidence de I’ensemble ordonnés, il est en général trés dur de vérifier
I'isomorphisme S'(A) =~ A[d] [51][60]. Le résultat technique principal de cette thése est le
Théoréme qui se base sur, et relaxe le Théoréme |51, Theorem 3.1] dans le contexte

des treillis finis.

Theorem . Soit L un treillis fini, soient d et | des entiers, et soit (My)aer une famille
de modules d’antichaines fortes. Si pour tout o € L on a lisomorphisme S'(M,) ~ M,|d]

alors L est ch_ Calabi-Yau fractionnaire.

La preuve de ce théoréme consiste & construire un isomorphismes S*(P) = P[l] pour
chaque module projectif indécomposable, a partir des isomorphismes S*(P¢) = Pcll]
qu’on a sur la famille des modules d’antichaines fortes, pour pouvoir appliquer le Théoréme
[51, Theorem 3.1]. Pour cela, on effectue un raisonnement par récurrence forte sur les
éléments a du treillis, qu'on appel récurence externe. L’idée phare de la preuve est de
construire des isomorphismes entre des objets gradués, les troncations des résolutions
d’antichaines du modules M, et leurs images respectives par le foncteur Sd[—d], a partir
d’isomorphismes en chaque degrés. Ceci prend la forme d’un deuxiéme raisonnement par
récurence, qu’on appelle la récurence interne. La nature forte des antichaines est cruciale.
Les Lemmes et décrivent les morphismes entre les résolutions d’antichaines
fortes et leurs troncations. Ces lemmes nous permettrons de rectifier certains diagrammes
de morphismes de complexes de chaines pour qu’ils commutent et qu’on puisse appliquer

I’'axiome TR3 et le lemme des "2 parmi 3" et obtenir I'isomorphisme voulu.

0.2.3 Un exemple qui corrobore une conjecture de Chapoton

Les ensembles ordonnés Calabi-Yau fractionnaire font 'objet d’une conjecture fascinante
due a Frédéric Chapoton [14] reliants des suites d’entiers d’origine combinatoire & des

catégories de Fukaya en passant par les ensembles ordonnés. Certaines suites d’entiers

Dy —d?
dg

ol la somme d'un dénominateur avec son numérateur respectif est égale & une constante

(Sn)nen connues peuvent s’écrire sous la forme d’un produit de fractions s, = I,

D,,. C’est le cas des nombres de Catalan, du nombre des matrices a signes alternés,
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de la famille de West et des intervalles de Tamari. La conjecture de Chapoton propose
d’expliquer cette coincidence par l'existence d’ordres partiels sur des ensembles P, de

cardinal s, dont les catégories dérivées respectives seraient $*-Calabi-Yau ot
n

C’:ZDn—Zdi.

De plus, la catégorie dérivée bornée en question serait équivalente a une catégorie de
Fukaya Seidel d’une surface construite a partir de la donnés des entiers D,, et des coeffi-
cients df,...,d}'. La conjecture prédit aussi une formule pour le polynéme de Coxeter et
le nombre de Milnor de la surface ainsi trouvée, qui peuvent faire 'objet de vérifications
par ordinateurs. Certaines conséquences de cette conjecture ont été démontrées [51].

Le but initiale de cette thése était de démontrer une autre de ces conjectures résultantes
dont I’étude avait en partie été faite dans [60]. On remarque que le coefficient binomial

(m+”) peut s’écrire comme suit
m

m+nm-+n-—1 m—+1

1 2 n

(1)

ou D =m+n+ 1. Ceci est probablement 'un des examples les plus naturels de formule
produit. Le treillis des idéaux d’ordre du produits de deux ordres totaux de taille m et n,
qu’on note ici J,, ,, est de cardinal (”jnm) Avec nos résultats sur les modules d’antichaines
fortes nous somme en mesure de confirmer la prédiction de Chapoton sur la dimension

Calabi—Yau fractionnaire de ces ensembles ordonnés.

5 . Sominy 5 5 mn -
Theorem 1’ La catégorie dérivée bornée de Jy,, est == +1-Calabz Yau.

Un corollaire directe donne une réponse positive a la conjecture de Chapoton—Yildirim

sur les ensembles ordonnés cominuscules de type A et B.

Corollary @ La catégorie dérivée bornée des ensembles ordonnés cominuscules de type

A, B or D est Calabi—Yau fractionnaire.

La preuve du théoréme précédent consiste a appliquer le théoréme [B| & une famille
de modules d’antichaines bien choisie. Dans le Chapitre 4| on considére donc une famille
trouvée et étudiée dans [60] que I'on note (Pa)acy,..,.- Pour que cette thése contienne
tous les éléments nécessaires a la compréhension des résultats principaux, on reproduit
certaines preuve de [60| en les adaptants & nos notations. Nous en déduisons que ces
modules d’antichaines satisfont les conditions du Théoréme |B| et prouvons ainsi notre

deuxiéme résultat notable.
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Le dernier résultat notable de cette thése fourni une raison plus structurelle au fait que

les catégories dérivées bornées de ces ensembles ordonnés soient Calabi—Yau fractionnaires.

Theorem . L’algebre d’incidence de J,, , est dérivée equivalente a l'algébre d’Auslander

supérieure Al

La combinaison des théorémes [C] et [E] donne une preuve nouvelle du fait que ces al-
gébres sont Calabi—Yau fractionnaires [22][21]|28]. De plus, il faut noter que cette equiv-
alence dérivée semble corroborer ’aspect géométrique de la conjecture de Chapoton dans
le cadre de la famille d’examples étudiée ici. En effet, il existe une catégorie de Fukaya en-
roulée associée aux Algebres d’Auslander supérieures de type A [21]. Une prépublication
plus récente lui associe méme une catégorie de Fukaya-Seidel dont le nombre de Milnor
est celui prédit Chapoton.

La preuve du Théoréme [E] repose sur un résultat spécifique aux antichaines booléennes
(Theorem : les espaces d’homomorphismes entre un module d’antichaine boolénne
et un interval décalé sont au plus de dimension un et sont concentrés en un seul degrés.
Dans le Chapitre [5| on se sert de ce résultat pour décrire les morphismes de la sous caté-
gorie pleine de D°(J,,,,) donc les objets sont les P, et leur shifts. On la note Y, ,,. On
décompose les morphismes en morphismes irréductibles (Lemme , Lemme et
on identifie les relations entre ceux-ci (Lemme [5.2.3] Proposition . Ainsi, on peut
trouver un objet basculant (Proposition , Lemme dont 'algebre des endomor-
phismes est isomorphe a A’ mais aussi a son dual quadratique (A" ')T. Ceci conclu
la preuve du Théoréme [E| tout en établissant un isomorphisme explicite entre A;L;Lll et
(A1, On fini cette thése en donnant une nouvelle charactérisation des morphismes de
la catégorie YV, en terme de suites entrelacées (Proposition , d’une fagon qui fait

echo & un résultat similaire pour les algébre d’Auslander supérieures [31].



Résumé court

Dans cette thése nous étudions la propriété Calabi-Yau fractionnaire sur des treillis. Nous
commencons par introduire des familles combinatoires de représentations de treillis qui ont
de bonnes propriétés homologiques. Nous en déduisons un premier résultat qui généralise
aux treillis join-semidistributifs un théoréme de Iyama et Marczinzik sur la dimension
global d’'un treillis distributif. Ensuite nous montrons que la propriété Calabi-Yau frac-
tionnaire peut étre vérifiée sur des familles de représentations au bon comportement pour
les treillis finis. De plus nous donnons un critére combinatoire pour calculer certains es-
paces de morphismes. Nous utilisons ces deux résultats pour montrer que la catégorie
dérivée du treillis des idéaux du produit de deux chaines est Calabi-Yau fractionnaire.
On établi de plus une équivalence dérivée entre ces treillis et les algébres d’Auslander
supérieures de type A et une autre avec leur dual quadratiques. Ces deux résultats corro-
borent une conjecture de Chapoton qui relie des ensembles ordonnés a des catégories de
Fukaya-Seidel tout en donnant des isomorphismes d’algébre entre des objets déja connus.

On décris les catégories en question avec des suites entrelacées.

Mots-clés

Théorie des représentations, algébre de dimension finie, ensemble ordonné.
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Fractionally Calabi-Yau Lattices

Abstract

In this thesis we study the fractionally Calabi-Yau property in lattices. We start by
introducing combinatorial families of lattice representations with good homological prop-
erties. As a first result we extend a Theorem of Iyama and Marczinzik on the global
dimension of distributive lattices to join semi distributive lattices. We then prove that
the Calabi-Yau property can be checked on well behaved families on modules for finite
lattices. We also give combinatorial criteria to compute certain hom spaces. We use
these two results to show that the bounded derived category of the lattice of order ide-
als of the product of two ordered chains is fractionally Calabi-Yau. We also show that
these lattices are derived equivalent to higher Auslander algebras of type A as well as
their quadratic duals. These two results combined corroborate a conjecture by Chapoton
linking posets to Fukaya Seidel Categories and at the same time gives interesting algebra
isomorphisms between well known objects. We give a description of the categories at

hand using interlacing sequences.

Keywords

Representation theory, finite dimensional algebras, posets.
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Chapter 1
Introduction

This thesis studies the Calabi—Yau property, which here will be representation theoretical
in nature, on partially ordered sets, considering examples linked in several ways to Lie
theory. Partially ordered sets, or posets, are ubiquitous in mathematics. From the way
that we count natural numbers to the optimisation of the products of matrices, orders help
us organise objects and processes, in canonical albeit non unique ways. Representation
theory is a branch of mathematics that translates algebraic structures to linear algebra. It
arose in the nineteenth century through the study of symmetries acting on sets. Using the
incidence algebra of a poset, we can apply the fruitful ideas of representation theory to the
study of posets. At the same time, incidence algebras of finite posets possess properties
that make their representation theory easier to describe combinatorially. Many central
objects in representation theory arise from Lie theory. It is a broad area of mathematics
which lies at the intersection of geometry, representation theory and the resolution of
partial differential equation with the strong motivation of describing physical phenomena.
In the nineteen-forties, it became apparent that central objects of Lie theory, i.e. compact
Lie groups and semi simple Lie algebras, were classified by root systems summed up using
Dynkin diagrams. The fractionally Calabi-Yau property comes from another field of
physics and expresses flatness of manifolds which arise in general relativity. We start by
giving an overview of the different notions mentioned above and list our results before

setting some notation and giving a detailed outline of the subsequent chapters.

The notion of fractionally Calabi—Yau categories was introduced by Kontsevich in the
late nineteen-nineties [42, Definition 28|. A triangulated category 7 with a Serre functor
S is said to be fractionally Calabi-Yau if there exists [ and d such that S' is isomorphic as a
functor to the suspension functor applied d times. We say that T is %—Calabi—Yau. When
T = D’(A), the bounded derived category of an algebra A of finite global dimension over
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a field k, we can take S = DA®%? the derived Nakayama functor. In that case, the
Calabi—Yau property can be further relaxed. If ¢ is an automorphism of A, then D°(A),
is said to be twisted fractionally Calabi-Yau if S' ~ [d] o ¢*, where ¢* twists the action
of A on a module by ¢. We recover the previous definition when ¢ = id4. The following

theorem makes it easier to detect twisted fractionally Calabi—Yau algebras.

Theorem A (|31, Proposition 4.3|). Let A be a finite dimensional k-algebra of finite

global dimension. The following conditions are equivalent.
(i) A is twisted ¢-Calabi-Yau.
(ii) S' A ~ A[d).
This leads to a question which is still far from being answered in general.

Question 1 (|31, Remark 1.6]). Is every twisted fractionally Calabi-Yau algebra frac-
tionally Calabi—Yau?

Because the trivial extension algebra of a (twisted) fractionally Calabi-Yau finite di-
mensional algebra of finite global dimension is (twisted) periodic [11], Question [1]is linked

to the following conjecture of Erdmann and Skowronski [23].

Question 2 (|11, Question 1.4]). Is every finite-dimensional twisted periodic algebra

periodic?

In the case of finite posets with a unique maximal element or a unique minimal element,
the answer to Question [1] is positive as per [51, Theorem 3.1]. However, for a given

incidence algebra the existence of an isomorphism
SH(A) ~ Ald]

is still in general very hard to check [51][60]. In this thesis we provide a relaxation of |51,

Theorem 3.1|, in the context of finite lattices, to help overcome that difficulty.

Theorem B. Let L be a finite lattice, d and | integers and (Cy)acr be a family of inde-
composable modules with simple head S, and having a boolean resolution. If for all o € L
it holds that S'(C,) ~ Cy[d], then L is %- fractionally Calabi-Yau.

This theorem does not provide with a recipe to find appropriate families, but it suggests
certain criteria which restrict the search for good candidates.
Fractionally Calabi-Yau posets are fascinating objects in part due to a hypothetical

relation to product formulas due to Chapoton [14]. In combinatorics, many families of



?:1% where the sum
7

of the numerator and denominator is constant and equal to D. Such families include

sets (Sp)nen can be counted by a product of fractions |S,| = II

the Catalan numbers, the number of alternating sign matrices, the West family and the
Tamari intervals family. Chapoton’s highly conjectural explanation is that there should

exist a partial order on S, whose derived category is %-Calabi—Yau, where
C=> D-2d,

Moreover, the bounded derived category in question should be equivalent to a type of
Fukaya-Seidel category associated to a singularity constructed from the data of D and the
d; coefficients. The conjecture also provides predictions regarding the Coxeter polynomial
and the Milnor number of the singularity some of which can be tested with a computer
on examples.

Some consequences of these conjectures have been proven since [51]. The starting
point of this thesis was to prove another one of these resulting conjectures which was

already studied in part in [60]. Observe that the binomial (m;") can be written as

m+nm+n-—1 m+1

1 2 n

(1.1)

where D = m + n + 1. This is probably one of the most natural examples of product

formulas discussed above. The poset of order ideals of a product of total orders of length

n+m

. ) and we write it J,,, ,,. Using our results on boolean antichain

m and n has cardinality (
modules we are able to confirm Chapoton’s prediction about the Calabi—Yau dimension

of these posets.

Theorem C. The bounded derwed category of Jmn is ;-5 -Calabi-Yau.

As a corollary this gives a positive answer to the Chapoton-Yildirim conjecture on

cominuscule posets of type A and B [60].

Corollary D. The bounded derived category of the poset of order ideals of a cominuscule
poset of type A or B is fractionally Calabi—Yau. For types A and B, the denominator is

h 4+ 1 where h 1s a constant associated with the root system.

The key observation one needs for applying Theorem [C| to cominuscule posets is their
classification into types C7, Crr or Cyrr depicted below [56]. Interestingly, there is no one
to one correspondence between this classification and the ADE classification of the root

posets one started with. However cominuscule posets of type A and B follow the pattern
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Cy Crr

Figure 1.1: The three types of cominuscule posets

C7 which is in particular, a grid. Corollary [D] follows from that. Type D follows patterns
Crrr or Cpr. Type C follows pattern Cp;. Pattern Cpy; is studied using Ladkani’s flip flop
technique [43], [60]. Pattern Cj; seems to be different and is not a consequence of our
work. The conjecture is still open in this case

Our proof of Theorem [C] gives a good understanding of the Serre functor for this
category. However, one would like to have a more structural reason behind the fractionally
Calabi-Yau property for posets. For us, a good reason why .J,, ,, should be fractionally

Calabi—Yau is our second main result which is the following derived equivalence.

Theorem E. The algebra of the poset J,, ., is derived equivalent to the higher Auslander

algebra ALY

Higher Auslander algebras were introduced by Iyama in [33] as part of a series of
seminal articles on higher representation theory. Higher Auslander algebras of type A
were soon after described in [35] and are known to be fractionally Calabi-Yau. As a

corollary of Theorem [C]and Theorem [E] we have a new proof of an already known theorem.
Theorem F. Higher algebras of type A are fractionally Calabi—Yau.

Previous proofs of this result have different flavours. The first stemmed from sym-
plectic geometry [21], the second, from the theory of infinity categories [22] and the most
recent from an intricate study of the properties of a certain preprojective algebra and its
Nakayama automorphism, linking it to the the Serre functor |28]. The proof presented
here is more combinatorial. Of course knowing Theorems [E| and [F] also gives a proof
of Theorem [C] It is also satisfying to note that this derived equivalence ties back into
Chapoton’s conjectures: a partially wrapped Fukaya category can be associated to higher

Auslander algebras of type A [21]. A more recent preprint [16] also links the higher Aus-
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lander algebras of type A to Fukaya—Seidel categories with the Milnor number predicted
by Chapoton.

1.1 Notation

Generalities Let k be a field and X a finite partially ordered set or poset. Define its
incidence algebra A = Ay (X) over k to be the k-vector space with basis pairs (z,y) such
that © <y with multiplication defined by

(z,t) ify=z
(z,y)(z,t) =
0 otherwise.

For z € X, we write e, = (x, ) the primitive idempotent. Then the unit of the algebra
Ais 1y = Zme + €z. Throughout this work we consider finite dimensional left modules
over A. For every element x € X the associated simple module is S, = k with action
(y,t)-1) = O unless y = t = x in which case e, -1 = 1. Its projective cover P, = A-e, has
basis {(y,z)|y < x}. Its injective hull is the injective indecomposable I, = (e, - A)* and
has basis {(z,y)*|r < y}. Morphisms between the projective indecomposable modules

are characterised by

e, ey, =k ifx <y,
Hom (P, P)) = Homy(Ae,, Ae,) =

0 otherwise.

We denote the canonical inclusion as /¥ : P, < P, whenever x < y which is the right
multiplication by (x,y). More generally for any left A-module M, for all z € X we have
Homy (P, M) = e, M. This isomorphism makes the following diagram commute

f c HOII]A(PJ;,M) A HOIHA(Py,M) = g

oLy

I D

flez) € ex M < ey, M > gley)

(x,y)-

The total hom complex Hom?% (C, M) where C' is a chain complex C' = ((C,)n, (0,)) of A-

modules and M is an A-module, is the complex
8*
.o = Homy(Cp, M) =% Homg(Chpy, M) — ...

Note that we omit a conventional sign for the boundary map as it plays no role in our
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computations. This is a cochain complex as the functor Hom(—, M) is contravariant.
Assuming that C,, = @,
ogy gives shifted morphisms in the homotopy category Ho(A-mod) [61, Lemma 3.7.10],

P, with S, a finite multi-subset of X and taking its cohomol-

which in turn are isomorphic to the shifted morphism in the derived category because the

source is a perfect complex:
H'(Hom?®, (C, M)) = Hompuo(4 moda)(C, M[i]) =~ Homps (C, M[i]). (1.3)

Most computations will be carried out explicitly in the homotopy category. When needed
the switch from one to the other will be discussed. Finally, using equation (|1.2) we have

an isomorphism of cochain complexes

Ly
. —— Homua (@D P, M) = Homa(  Po, M) — ...

TESH TESn+1
l l (1.4)
.—>@exM > @exM—>...
z€SH zESn+1

The boundary maps of the bottom complex are linear combinations of left multiplication

by elements (x,y) of the algebra with coefficients inherited from the top complex.

Antichain Modules Let (L, A, V) be a finite lattice. We write 1 its greatest element
and 0 its least one. Let C' be an antichain in L i.e. a subset C' of L that consists of
pairwise incomparable elements of L. We say an antichain C' is below an element « of
L if for all ¢ € C, we have ¢ < «, and when needed we record this information by the
notation C,. Following |37, Proposition 2.1| we associate to an antichain C' = {¢;,..., ¢}

the submodule

N¢ = XT:A- (ci, 1)
i=1

of the projective indecomposable P; generated by the antichain. It follows directly from
the same proposition that there is a one to one correspondence between antichains and

submodules of P;. The antichain module associated to C' is defined by
MC = Pj/NC-

We will talk of antichain modules below a € L by restricting to the sublattice [0, a] of L.

Then « is the greatest element of this lattice and there is a bijection between submodules
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of P, and antichains below a. The corresponding modules will be denoted N& and M§. As
our main example consider a < b in L. The maxima of the set of elements of L which are
strictly less than b but not above a form an antichain C' and the antichain module below
b associated to C' has support the interval [a,b]. The corresponding antichain module is
usually called an interval module. In the rest of the paper we identify intervals with their

interval modules.
Lemma 1.1.1. Intervals are antichain modules.

With the convention of the previous paragraph, morphisms between interval modules

follow a simple rule

k ifa<c<b<d,
Homy([a, b], [c,d]) = (1.5)

0 otherwise.

By [37, Theorem 2.2|, for every antichain C' of cardinal r of a lattice L the associated

antichain module M¢ has a projective resolution P¢ of the form

0—>PT—>---—>P0—>MCWhereP0:PiandPl:@P/\Sforlglgr.
scc

1S|=l
Similarly, define a resolution Pg for the antichain module M¢ below « by replacing P; by
P,. The boundary maps are defined by fixing an arbitrary total ordering of elements in C'
and, in each degree, setting the following maps between the indecomposable summands

of the source and target in each degree:

Ps — Phr
—D)lils (z, AT) if TU{i} =S, (1.6)
(n8) s CDE@AT) i}
0 otherwise

for each S = {i1,...,ix} and (A S,AT) € Pur where |i|g = |[{j € S|j < i}.

1.2 Detailed outline

In Chapter [2] we present background on the representation theory of posets. We revisit

some of the objects discussed in the Notation section.
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- - In Chapter [3| we introduce four properties on
H antichains in lattices: intersectivity, inclusivity,
5140 strength and booleanity. They are related as in fig-

+ def

e
| inclusive | ‘='| boolean | ure[LA] In Lemmal[3.1.3]we show that an antichain
511 C' is boolean if and only if it spans a boolean sub-
n lattice in L. This justifies the terminology. Boolean
stron

& antichains have a crucial property (Theorem [3.3.4)):

Figure 1.2: Properties of Antichains hom spaces in the homotopy category from a boolean
antichain module to a shifted interval are at most
one dimensional and are concentrated in one degree.
This does not hold for antichains that are only strong.

However, certain hom spaces can still be controlled well enough. More specifically
Lemmas and describe the maps between a resolution of a strong antichain
module and its truncations.

Using these lemmas we prove Theorem
which is the main technical result of this thesis. It Po FPq
is a categorification theorem that builds upon and
broadens |51, Theorem 3.1] which states that it suf-

fices to check the Calabi—Yau property on projec- .

tive indecomposable modules in a finite poset with —

a least or greatest element. Our result implies that,

for finite lattices, it suffices to check Calabi—Yau .

property on any family of non zero strong antichain

modules as long as it is sufficiently large. The proof

~Y

consists in constructing isomorphisms S¥(P) 2 P[]
Figure 1.3: Isomorphisms of graded

for projective indecomposable modules using the .
objects out of homogeneous one.

isomorphisms S*(P¢) = Pc[l] on the family of an-
tichain modules. We proceed by strong induction on the elements of the lattice. The
main idea of the proof is to construct an isomorphism between graded objects out of
ismorphisms in each degree. This requires a so called inner induction. See Figure for

an illustration. The fact that these objects come from strong antichains will be crucial

as we use Lemmas [3.4.1] and [3.4.4] to ensure that required squares commute by rectifying

any discrepancy. As a result we can apply axiom TR3 and the 2 out of 3 Lemma |3.5.3
and gain the isomorphism we want.

Theorem [3.5.1] is applied in Chapter [4] to the incidence algebra of the lattice of order

!The dashed arrow refers to a late addition to the manuscript
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ideals of the product of two ordered sets. To discuss antichains it is convenient to see the
elements of this lattice as paths in grids. We consider a family of antichains introduced
in [60]. Its associated objects are written (Pa)acy,,,.. We recall the main arguments of
proofs from [60] and adapt them to our convention to show that these antichains satisfy
the conditions of Theorem This proves Theorem [C|

In Section [p| we describe morphisms between the objects P, and their shifts. The goal
of Section |5 is to prove Theorem . We call Y, the full subcategory of D?(A) whose
objects are the antichain modules P, and their shifts. Knowing that they are intervals
and that their corresponding antichains are boolean, Theorem [3.3.4] implies that each
hom space is of dimension at most one. Proposition [5.1.12] gives the following canonical

factorisation of morphisms in ), , into extensions and degree zero morphisms.

Pa > Poll /]

\ (1.7)

Pl ]

The extension is explicitly described in Proposition [5.1.8] and further decomposed
into elementary extensions in Lemma [5.1.13] The proof relies on computations in the
homotopy category of complexes as the source of the morphism is identified with its
projective resolution and the target is an interval. It follows from Proposition [5.1.12
that the degree one morphisms are parametrised by a subset of the original antichains
themselves. It is also crucial to the proof that not all subsets of the antichains yield
extensions. Definitions provides a characterisation of these subsets which we call

allowed subsets.

The second component of the composition in equation (1.7]) is a morphism between
intervals of the form [f(«),«]. Morphisms between intervals are described by equation
(1.5) and comparison of partitions is done term wise. Most of the proofs amount thus to

checking inequalities of the form:

fla)i < f(B)i<a <B;

for appropriate indices © < m. Lemma [5.1.1] gives alternative characterisations of mor-
phisms between the objects P,. Corollary [5.1.3 highlights certain morphisms P, — P, («)
using the new characterisations. Finally, Lemma [5.1.14] provides a decomposition into el-

ementary morphisms.

Next, Proposition [5.2.12] describes the relations between these morphisms. It uses
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Lemma [5.2.3| which identifies the relations with the same manipulations of morphisms be-
tween intervals and complexes as before. In the process, in Proposition we interpret
the morphisms in a combinatorial setting that links Y, ,, to Higher Auslander algebras of
type A. In Corollary we give three slightly different yet significant presentations of
the category YV, with generators and relations. This leads us to prove Theorem E In
Proposition and Lemma we extract a tilting object from the category YV, n.

T:= P Palral (1.8)

The integers k. ensure that T has no self extensions and are encoded using only the
partitions a.. The fact that Thick(7") generates the derived category can already be seen
in the proof of as every projective is obtained as a succession of cones from the family
of antichains. One of the presentations of Corollary concludes the proof of Theorem
while another shows that End(7)? is isomorphic to the quadratic dual (A7) of the
higher Auslander algebra of type A. Thus End(7)? is an intermediate object between
the Auslander algebra and its quadratic dual. We conclude this thesis by giving a new
characterisation of morphisms in },,,, using interlacing sequences in a way that mirrors

known characterisations of higher Auslander algebras (Proposition [5.4.9)).

1.3 Perspectives

We now give a few short term perspectives that arise from the work presented in this
thesis. A first step would be to check that the geometric model from [16] has all the
correct combinatorial characteristics (see Weights in Section . Next, one could try
to tackle another item from the list of candidate Calabi—Yau posets in [12]|. Specifically,
can our results, combined with an adapted version of Yildirim’s combinatorics, be used
to prove that the lattice of plane partitions is fractionally Calabi—Yau? Other extensions
of Yildirim’s combinatorics come to mind when considering that all finite posets can be
written as posets of sequences (see Subsection . A topic which was left out of
this thesis is the symmetry of the lattice J,,, with regards to m and n and its possible
relation to koszulity as indicated through the derived equivalence we establish. Finally,
as a general program, what other representation theoretic properties can we detect using
antichains? Is it possible to easily detect when an antichain module is an interval? Would
that lead us to a general recipe for finding good families of intervals in posets in order to

detect the Calabi—Yau property more easily?



Chapter 2
Representation theory of posets

This thesis is about the study of representation theory of the incidence algebras of posets
by making use of their combinatorics. In this chapter we recall the results upon which
we build the theorems of Chapter 3, 4 and 5. Results are either mentioned because they
are used directly or because the author believes they give precious context for subsequent

background.
In Subsection 2.1.1] we start by recalling notation and convention of the represen-

tation theory of bound quivers. Subsection [2.1.2] contains some results and definitions
from Auslander—Reiten theory. We finish this section with basic definitions relating to
posets with the aim of discussing poset dimensions. The mathematics of this section were
developed no later than the 1970’s. Since then, there has been tremendous progress in

the different fields we have mentioned. Sections [2.2] and 2.3l record some of these.

In Section [2.2] we recall the construction of the derived category of an abelian category,
recall its triangulated structure and discuss important functors. The results of this section
date mostly to the 1990’s. Some very basic results about triangles will be used in a crucial

way in the proof of the main result of Chapter
Section gives a short account of our understanding of Higher Auslander theory,

which was developed in the 2000’s. Our goal here is to introduce higher Auslander algebras

of type A as they play an important role in our results.

The author is tempted to say that derived representation theory and Higher Auslander
Algebras are two different ways of expanding upon classical representation theory. One
could say that the first one arose from the need to replace modules by their better behaved
projective resolutions while the second answers natural questions such as "what if we re-
place (a hidden) 1 by n?". However, higher Auslander—Reiten theory arrived after derived

representation theory and lives firmly in that context so the separation is somewhat naive.

11
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Certain aspects of modern representation theory were left completely untouched in this
manuscript like the importance of cluster theory, the fact that triangulated categories are
being replaced or enhanced by more suited structures such as dg-categories and the rise
of the infinity categorical language.

Finally, in Section we are able to describe in more details the conjecture of Chapo-
ton which lies at the heart of this thesis.

2.1 Foundations

This section is heavily based on Chapters 1 to 4 of |2] where the reader can find more

details on the representation theory of finite dimensional algebras.

2.1.1 Quivers, relations and representations

We first fix some notation and conventionﬂ. Let k be a field. A quiver Q = (Qo, @1, s, 1)
has vertices 0y, edges ()1 and the maps s,t : ()1 — Qo assigning respectively a source and
a target to each arrow o € (1. In this thesis we only consider quivers with a finite number
of vertices and arrows. We denote by k@ the path algebra of the quiver (). It has basis
the finite length paths a,. 0 -+ 0 ay. where for all i < r, t(c;) = s(a;41). Multiplication is

defined by concatenation of paths
Boa=s(a) = [tla) = s(B)] = t(B).

For a given path p = a,.0- - -0y, we set s(p) = s(ay) to be the source of p and t(p) = t(«;)
to be its target. For each vertex in ¢ € @)y, denote e;, the lazy path on i, i.e. its associated
idempotent. Then, as () is finite, the unit of k() is Zz‘er e;. The radical of the algebra
k(@ is the ideal generated by paths of length one and denoted Rg. A two sided ideal I of
k@ is admissible if there exists m > 2 such that

Ry CIC R

If T is an admissible ideal, the pair (Q,I) is a bound quiver or quiver with relations

and the quotient algebra kQ/I the bound quiver algebra.

Example 2.1.1. If () is a finite quiver with no oriented cycles, the zero ideal is admissible.

In that case, the quiver algebra is hereditary, meaning submodules of projectives are

1Like with many convention in mathematics, those chosen in this work are not universal. We apologise
in advance to the reader who might be used to arrows going in different directions.
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Figure 2.1: A commutative square with one leg

projectives. This is because resolutions of indecomposable modules have length two as

elements of the kernel give relations of the algebra.

Example 2.1.2. Figure [2.1| represents a quiver made up of a square with a leg. To make
the square commute consider the admissible ideal I =< f o a — § oy > generated by a

linear combination of paths of length two.

Example 2.1.3. A bound quiver can be associated to any finite poset. Let X be a finite
set with a relation < which is transitive, reflexive and antisymmetric. A relation a < b
is a covering relation if the interval [a,b] = {z|a < zand z < b} is of size exactly 2.
The Hasse diagram Hg of the poset is the quiver whose vertices are the elements of the
poset and where there is an edge from b to a if and only if b > a is a covering relation.
Because there is only one way for an element a to be less than an element b, all the
paths from b to a should be identified for the poset to be correctly represented by the
quiver. Consider the ideal I = (p — ¢|p, ¢ paths in H, with s(p) = s(¢) and t(p) = t(q)).
This ideal is admissible because posets have no oriented cycles. The resulting quiver
algebra with relations is the incidence algebra of the poset. Note that the bound quiver
of example [2.1.2] is in fact the bound quiver associated to the poset with five elements
X =1{1,2,3,4,5} with the order relation defined by 1 <2 <4 <5and 1 <3 <4.

For an admissible ideal I, the condition Rf; C I ensures that any path of length greater
than m maps to zero. It follows that the bound quiver algebra is finite dimensional.
Meanwhile, the condition I C Ré ensures that the arrows of the quiver do not map to
zero and that the images of the primitive idempotents e; in kQ/I still forms a set of
primitive idempotents, their sum being the unit of the algebra. We use the same notation
e; for i € @y to denote the idempotents of k@ /I as there will never be a confusion as
to which algebra we are referring to. We say a bound quiver algebra is quadratic if I is

generated by linear combinations of paths of length 2.
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A representation of a bound quiver (Q = (Qo,Q1),I) over a field k is the datum
((Vi)ieo, (fa)acq,) where for each i € Qq, V; is a k-vector space and f, : Vi) = Vi(a) is

a linear map such that for any element > \; - @, 0 -+ 0 ;1 of I we have

Z)‘i . famz 00 far, =0.

The dimension vector of the representation () is the tuple (dim(V;));eq,. The support of
a representation is the set of indices in 7 € @)y such that V; # 0. A morphism ¢ between
two representations V' = ((V;)icqo: (fa)acg,) and U = ((Ui)ieqy, (9a)aco,) is a family of
linear transformations (¢; : V; — U;)ieq, that make the following square commute for
each arrow a € ().

fa
Vita) — Vi(a)

l(bs(a) l@(a)

Us) —— Uya)

We denote Rep,(Q, I) the category of representations of ) with relations I, and rep,(Q, I)
the full subcategory of Rep,(Q, I) whose objects are the quiver representations with finite

dimensional vector spaces on each vertex.

Example 2.1.4. The diagrams in Figure [2.2] illustrates representations of the quiver

algebra of the commutative square with a leg from example [2.1.2| with the maps

o]

and ¢ the linear form [1,1]. The representations are related by a morphism of represen-
tations. The dimension vector of the representation on the left is (1,1,2,1,0) and the

dimension vector of the representation of the right is (0,1,0,1,1)

Theorem 2.1.5. There is an equivalence between the category Repy(Q, I) and the category
k@/I-Mod of left modules over the bound quiver algebra. This equivalence restricts to an
equivalence between rep,(Q,I) and kQ/I-mod the category of finitely generated kQ/I-

modules

Because k@) /I has a complete set of primitive idempotents we have the following de-
scription for its simple, projective indecomposable and injective indecomposable modules
respectively. Let ¢ be an element of (). Its associated simple module S; has underlying
vector space k with action on a path p defined by p - 1x = 0 unless p = e; in which case

e; - 1 = 1x. The projective indecomposable module associated to i is P, = kQ/I - ¢; and
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b?’(—’f’

.
ASNEZAN
NA T

Figure 2.2: A morphism of representations of the commutative square with a leg.

is generated as a vector space by the paths with source . The injective indecomposable
module associated to i is I; = (e; - kQ/I)* and is generated as a vector space by the duals

of paths with target i.

Example 2.1.6. In example[2.1.4] the representation on the left is isomorphic to Py @ Ss.

The representation on the right is isomorphic to I5.

The importance of bound quivers within the representation theory of finite dimensional

algebra is given by the following theorem of Gabriel.

Theorem 2.1.7. Suppose k is an algebraically closed field and let A be a finite dimen-
sional k-algebra. Then there exists a unique quiver (Q and there exists an admissible ideal
I such that A-Mod = Repy(Q,I).

Note that the ideal I need not be unique. This somewhat basic fact will play a
surprisingly central role in the last chapter of this thesis. This theorem also illustrates
how we are more interested in the Morita class of the algebra than in the algebra itself.
A classical theorem of Morita characterizes equivalences of categories of modules using

special modules.

Theorem 2.1.8 (Morita). Let A and B be rings. Then the categories of left A and B
modules are equivalent if and only if there exists a finitely generated projective A-module

P such that there exists a positive integer n for which A is a direct summand of P®" and
B = (Endy P)P

Such a modules P is called progenerator as it is projective and generates the entire
module category by direct sums and quotients. A Morita equivalence induces an equiva-
lence between the respective categories of finitely generated modules.

The seventies saw the advent of several breakthroughs in the description of the category

Repy(Q, I). We distinguish three types of finite dimensional algebras in what is now a
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famous trichotomy of representation theory. An algebra is of finite representation type
if it has a finite number of isomorphism classes of finite dimensional indecomposable
modules. An algebra is of tame representation type if for any given dimension vector, all
but a finite number of indecomposable representations are parametrised by a 1-parameter
family. An algebra is of wild representation type if there is an embedding of the category
of finitely generated modules over k (z,y) in A-Mod where the former is the free algebra
on two generators. By a theorem of Drozd, all finite dimensional algebras are of one of
these types [19]E|. Hereditary quivers of finite type are classified by the following staple

theorem.

Theorem 2.1.9 (Gabriel [24][9]). Let Q be a finite quiver. Then Q is of finite represen-
tation type if and only if each connected component of its underlying undirected graph is

a simply-laced Dynkin diagram as depicted below.

A, e Y — ° ° e n vertices, n > 1.
° ® ————-- ° ° °
D, n vertices, n > 4.
[ J
[ ] [ ] [ ] [ ] [ ]
Fg
[ ]
[ ] [ ] [ ] [ ] [ ] [ ]
Er
[ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
Fg
[ ]

See |9] for an introductory exposition of the theorem in english.

2.1.2 Auslander—Reiten Theory

Auslander—Reiten theory provides more tools to describe the category of modules of an
algebra and detect when an algebra is representation finite. In this subsection we only

present the notions and results that will be used in this thesis. We omit central and

2with earlier versions in Russian.
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interesting aspects of the theory such as almost split sequences and their role in the
description of the Auslander—Reiten quiver. The historical source for this section is [5]

but we will still refer directly to [2| out of convenience.

Definition 2.1.10 (|2, Definition IV.1.4]). Let A be a finite dimensional k-Algebra. A
morphism f: X — Y in A-mod is said to be rreducible provided:

(a) f is neither a section nor a retraction and

(b) if f = f1 0 fa, either fi is a retraction or fs is a section.

Definition 2.1.11 (|2 Definition A.3.3]). The (Jacobson) radical of an additive category
C is the two sided ideal rade defined by

rade(X,Y) = {h € Home(X,Y)|1, — g o h is invertible for any g € Hom¢(Y, X)} (2.1)

Lemma 2.1.12 (|2, Lemma IV.1.6]). Let X,Y be indecomposable modules in A-mod. A
morphism f: X — Y is irreducible if and only if f € rad meq a(X,Y) \rad® 4 4(X,Y).

Construct the Auslander—Reiten quiver of a finite dimensional algebra A as follows:
take the vertex set Qg to be the isomorphism classes of indecomposable A-modules and
between two indecomposable modules put as many arrows as the dimensions of the vector
space rad_moa(X,Y)/rad’__ 4(X,Y). This quiver encodes the structure of the cate-
gory A-mod as every finite dimensional representation is a direct sum of indecomposable
objects and for algebras of finite type, each morphism can be decomposed into irreducible
morphisms see |2, Lemma IV.5.6]. Following |2, Definitions 1.5.5 and 1.5.7] we have the

following useful notions.
« A submodule L of M is superfluous if for every submodule X of M the equality
L+ X = M implies X = M.

o An epimorphism h : M — N is minimal if Ker h is superfluous in M. An epimor-
phism h : P — M is a projective cover of M if P is a projective module and h is a

minimal epimorphism.

« An exact sequence
hm ha ho
=P, —PFP,1—=- —>P —=F—=M=0

in A-mod is a minimal projective resolution of M if for each j > 0, the morphism
hj : P; — Imh; is a projective cover. The truncated sequence P, — Fy, — M is

called a minimal projective presentation of M.
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Example 2.1.13. In a finite quiver @ = (Qo, Q1) with no oriented cycles, the projective

cover of the simple .S; is the projective module P; for any ¢ € Q.

It is well known that every finitely generated module over a finite dimensional alge-
bra admits a projective cover. It follows that every module has a minimal projective
resolution. See |2, Theorem 5.8 for instance. Every minimal projective resolution of a
module M has the same length which we call the projective dimension of M and denote
it pdim M. For an algebra A, the global dimension is the supremum of the projective
dimension ranging over all left A modules. It is denoted gldim A and can be infinite. In
this thesis we consistently work with projective resolutions, however we point out that

dual notions exists with injective modules.

+ A monomorphism v : M — E is minimal if every non zero submodule X of E has a

non zero intersection with Im w.

« A monomorphism u : M — [ is an injective hull if I is an injective module and u is

minimal.
+ An exact sequence written with cohomological conventions

0 -1 -m
0—-M "t — .ot iy
in A-mod is a minimal injective resolution if for each m > 0, the embedding
Im(u™) < I"™ is a minimal monomorphism. The truncated sequence M — I° — I!

is called a minimal injective presentation of M.

In the category of finitely generated modules over a finite dimensional algebra, every

module has a minimal injective resolution.

Example 2.1.14. In a finite quiver ) = (Qo, ¢)1) with no oriented cycles, the injective
hull of the simple S; is the injective module I; for any ¢ € ).

The length of a minimal injective resolution of a modules M is the injective dimension
of the module denoted idim M.

Theorem 2.1.15 (|44]). The mazimum of the injective dimension ranging over all left

A-modules coincides with the global dimension.

Theorem 2.1.16 (Auslander |44, Theorem 5.73]). Let A be finite dimensional algebra
with Jacobson radical J =rad A. Let {S;} be a complete set of simple left A-modules (up

to isomorphisms). Then

gldim A = max(pdim(S;)) = pdim(A/J).
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This theorem holds for a larger class of rings but will not be used in its more general
form. The global dimension is one measure of the complexity of the category of modules
over an algebra. The higher it is the more layers of projective modules one needs in order
to describe finitely generated modules. Other statistics behave differently. Consider A as
a left A module and let

0 A>T > ..o 5™

be a minimal injective resolution of A. As in [5| we define the dominant dimension of A
to be the maximal integer i (or oo) such that for all j < 7, the module I’ is a projective-

injective module. We denote it domDim(A).

Example 2.1.17. The square with a leg has a unique projective-injective module

Ps = I and its incidence algebra Ap has the following minimal injective resolution.
0= J A= TP 5 [P Il — I, — 0

Hence its dominant dimension is 1.

Proposition 2.1.18. A minimal projective resolution is a projective resolution of minimal
length on M.

Definition 2.1.19. An Auslander algebra is an algebra A whose global and dominant

dimensions satisfy the two inequalities:
gldim(A) < 2 < domDim(A).

We now state a famous theorem of the representation theory algebras, linking the

notions of finiteness we have introduced so far in a surprising way.

Theorem 2.1.20 (Auslander correspondance [3|). There is a one to one correspondence
between Morita equivalence classes of representation finite, finite dimensional algebras and

Morita equivalence classes of finite dimensional Auslander algebras. It is given by
AT :=End(M)

where M s an additive generator of A-mod.

Example 2.1.21. Consider the quiver algebra of equioriented type A on 5 vertices. Its

quiver is also the Hasse diagram of a total order on 5 elements. It is known that the
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Figure 2.3: The quiver A5 and the Auslander—Reiten quiver of its path algebra

indecomposable As-modules are the intervals of the poset. The morphisms between them
follow the rule from equation ((1.5). In Figure , dashed lines indicate zero relations and

squares commute. The labels indicate the intervals.

Noteworthy functors Fix a finite dimensional algebra with finite global dimension.
In this thesis, we generally work with left modules. In this paragraph we consider the
categories of finitely generated left but also right modules over A. The latter is denoted

mod A. There exist several functors that link left and right A modules.

D : A-mod — mod A (=)": A-mod — mod A
M s Homy, (M, k) M v Homu(M, A)

With the functor D, also called standard duality, we make more precise the duality between
projective modules and injective modules [2, Theorem 5.13]: D is a contravariant equiv-
alence of abelian categories that sends the projective (resp. injective) left modules to the
injective (resp. projective) right modules, left projective covers (resp. injective envelope)
to right injective envelopes (resp. projective covers). By composing these functors above
together we get other interesting functors. The Nakayama functor is the endofunctor of

mod-A obtained by the following composition

v: A-mod — A-mod
M +— DHomy (M, A).

It is ubiquitous in representation theory. There is an isomorphism of functors

v = DA(K)? (2.2)
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as both functors are right exact and coincide on projective modules |2, Lemma II1.2.8].
The Nakayama functor is an equivalence between the subcategory of projective modules
and the subcategory of injective modules [2, Proposition 111.2.10]. As an indication of
the proof notice that left module morphisms from the indecomposable projective module
e;A to A are entirely determined by the image of the idempotent e,. Hence we have
an isomorphism Homy(e,A, A) ~ A - e, which leads to vP, = D Homgu(e, A, A) ~ I,.
The functor v = Hom (DA, ?), while being well defined on all left modules, acts as a
quasi inverse to the Nakayama functor on the subcategory of injective left modules. The
following example illustrates how the Nakayama functor is not an equivalence of categories

in general.

Example 2.1.22. If P is a poset with at least two elements and a maximum 1, then
one can check that vS; ~ 0 using the characterization of morphisms between intervals of

posets given in equation ((1.5)).

One can also consider the transpose Tr(M) of a left A-module M. Let P, 2% Py —
M — 0 be a minimal projective presentation of M. When we apply the functor (—)* to
this sequence we get a sequence of right modules which can be completed into a short
exact sequence 0 — M" — P} A, P} — Coker(p}) — 0. We set Tr(M) = Coker(p). The
following Proposition describe how the transpose is a bijection on certain isomorphism

classes of indecomposable modules.

Proposition 2.1.23 (|2, Proposition 2.1|). Let M be an indecomposable module. M is
projective if and only if Tr(M) = 0. If M is not projective then Tr M is indecomposable
and Tr(Tr(M)) =2 M. Moreover, if N is also an indecomposable non projective module,
then M = N if and only if Tr(M) = Tr(N).

Consider the procedure M +— D Tr(M). It is well defined but not functorial. It
sends to zero the projective modules but acts bijectively on classes of non projective
indecomposable modules. To make the translation into an automorphism of categories,
we construct the projective stable category mod-A by taking the quotient of mod-A by
the ideal generated by morphisms which factor through projectives |2, Proposition 2.2].
Similarly, we can construct the injective stable category mod-A. Define the Auslander—

Reiten translation and its inverse as follows:

7 : A-mod — A-mod 71 A-mod — A-mod
M — DTr(M) M — Tr D(M).
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When looking at their action on modules and not on morphisms, the Nakayama functor
and the Auslander—Reiten translations are both related to very basic dualities and act as
bijections on different parts of the category of modules. The following proposition gives

the precise way in which these functors are linked.

Proposition 2.1.24. (a) Let P, £ Py 2% M — 0 be a minimal projective presentation

of an A-module M. Then there exists an exvact sequence
0> 7M = vP 25 vPy 225 uM — 0.

(b) Let 0 — N SN Ey 1 Ey be a minimal injective presentation of an A-module M. Then

there exists an exact sequence
71 71.
0—>v NS v B, S v tE - 'M—0.

We finish this subsection with a small amount of context regarding the Auslander—
Reiten translation as it plays a central role in describing the category of finitely generated
modules over finite dimensional algebras. The main ideas are summed up in the following
theorem. We leave certain notions, written in red, undefined, as we do not use them. We

point to |2, Chapter IV] for more details and to [4] for an historical source.

Theorem 2.1.25 (|2, Theorem 1V.3.1, Lemma IV.4.8]). (a) For any indecomposable non

projective finitely generated A-module M there exists an almost split sequence
0= — E— M — 0.

(b) For any indecomposable non injective finitely generated A-module N, there exists an
almost split sequence
0—=+N-—=F—7'N-=0.

This makes the Auslander—Reiten quiver into a translation quiver.

This theorem gives rise to a procedure, the knitting algorithm which can be used to
describe the entire category of finitely generated modules when the algebra is represen-
tation finite [1|. See Figure (2.4) where the dashed arrows indicated the action of the

Auslander—Reiten translation when it is non zero.
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Figure 2.4: The Auslander—Reiten translation of Aj;

2.1.3 Posets

In this subsection we discuss combinatorial properties of posets. These concepts will be
used in representation theoretic contexts to cary out homological computations that are
in general hard. Fix a finite poset (X, <). A linear extension of the order < on X is
a total ordering on X which refines the partial order <. A poset has many statistics
characterizing its complexity. For instance the size of the largest antichain in X is called
the width. A chain has width 1. We denote the width of X by w(X). Another statistic
would be the maximal integer k such that there exists x € X which covers exactly k
elements. We call this the mazimal covering number and denote it cov(X). Recent work
in algebraic combinatorics points to the maximal covering number having interesting
algebraic interpretations [6]. The following statistic is more complex to define but is more

commonly used in combinatorics.

Definition 2.1.26. (Dushnik-Miller order dimension |20]) The order dimension of a poset
is the minimal integer ¢ such that there exists ¢ linear extensions of < whose intersection

is equal to <.

Theorem 2.1.27 ([40]). Let t be the order dimension of X. Then t is the minimal
integer such that X embeds as a poset in the product of chains Rt equipped with term-wise

comparison

Proof. We write the finite poset X as {1,...,n}. Let Rq,...,R; be linear extensions of
< satisfying <= N;R;. The data of an ordering R; on X corresponds to a permutation
o; on X such that

gi(D)Ri0i(2)R; ... Rioi(n).
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The following map is an order preserving embedding

P — R?

x> (o1(x),...,00x)).

This shows that the least integer for which such an embedding exists is at most ¢. Con-
versely, consider an order preserving embedding ¢ : P — R®. We can assume that the

projection 7; on the i copy of R in R? is injective. Then the permutation
o; = (mou(l),...,moun))

defines a total order R; on X = {1,...,n}. One can check that <= N;R;. H

The posets that we consider in this thesis are often [attices, meaning that pairs of

elements x,y € X have a well defined
« least upper bound, denoted z V y (read "z join y");
« greatest lower bound, denoted z Ay (read "z meet y");

in which case the binary operations V and A are compatible with the partial order i.e., if
r1 < a9 and y; < yo then 1 Vyy < a9 Vys and 1 Ayp < 29 A yo. Equivalently, a lattice
can be defined as an algebraic structure on the set X using only the join and meet binary
operations together with absorption axioms. In that case, an order relation on the set
X can be defined in order to recover the previous characterization. Every finite lattice
is complete, implying it has a least and mazimal element denoted respectively 0 and 1.
A lattice is said distributive if the join distributes over the meet and vice versa i.e. for

x,y,z € X, we have
zAyVz)=(@Ay)V(eAz)andzV(yAz)=(zVy A(zV=2).

Example 2.1.28. Let m and n be positive integers. Consider the set of non decreasing
sequences of length m with values in [0, n] ordered with termwise comparison. Denote
this poset J,,,. It is a lattice. For elements (a;);<m and (b;)i<m in J,,, compute the join

and the meet by taking the join and meet termwise as follows

(ai)icm V (bi)icm = (max(ai, b;))icm and (a;)i<m A (bi)icm = (min(as, b;))i<m.
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1 1
i
<z
i
0 0

Figure 2.5: The diamond and the pentagon lattices

Moreover, we can check that it is distributive with a direct computation

(@i)i<m A [(bi)i<m V (€i)icm] = (min(a;, max(bi, ¢;)))i<m
= (max(min(a;, b;), min(a;, ¢;)))i<m

= [(as)i<m A (bi)i<m] V [(@i)izm A (¢i)i<ml].
The computation is similar for the second distributivity identity.

A sublattice is a subset of X stable under the meet and the join operation. There are
combinatorial criteria to identify distributive lattices. The following is well known and
attributed to Garrett Birkhoff.

Theorem 2.1.29. A lattice is distributive if and only if it does not contain sublattices
isomorphic to the diamond or the pentagon lattices (Figure .

While the notion of distributive lattices is very useful, it can be both strengthened
and weakened. On the stronger side, a distributive lattice is boolean if every element has
a complement i.e. for all z € X there exists 2/ € X such that V2’ =1 and z A 2/ = 0.

We call atoms the elements that cover 0. The following theorem is due to Stone [55]

Theorem 2.1.30. A finite lattice is boolean if and only if it is isomorphic to the power
set of the atoms of X.

In particular, the meet, join and complement operation of boolean lattices correspond
to the intersection, union and complement operations of power sets and its cardinal is
always a power of two.

A similar representation result exists for distributive lattices using a more elaborate
set of subsets of the lattice. An element x of X is join irreducible if it covers exactly one
element of X i.e. for all a,b such that a Vb = x, we have a = x or b = x. Join irreducible

elements are to lattices what irreducible elements are to integral domains. An order ideal



26 CHAPTER 2.

is a subset I of X that is downward closed i.e. if x € I and y < x then y € I. The

following famous theorem is due to Birkhoff.

Theorem 2.1.31 (Fundamental theorem of finite distributive lattices |7]). A finite lattice
18 distributive if and only if it is isomorphic to the lattice of order ideals of its poset of

join irreducible elements.
Distributive lattices are to lattices what unique factorisation domains are to domains.

Example 2.1.32. Let n be a positive integer. The set of divisors of n can be equipped
with the order relation

a<b< alb.

This makes it a distributive lattice where the meet is given by the ged of two element and
the join is their lem. The join irreducible elements of this lattice are the prime powers

dividing n.

Example 2.1.33. Recall from example|2.1.28|the lattice J,, ,, of non decreasing sequences
of length m in [0,n]. To characterize its join irreducible elements we notice that the

covering relations of this lattice correspond to relations
a=(ay,...,0q;,...,4m) > (a1,...;a; —1,... an).

For the second sequence to be non decreasing, it must be that a,_; < a;. Hence the
clement a of J,,, covers exactly one other element of the lattice if and only if it has
exactly one non zero value. In that case a can be written as (0,...,0,7,...,7) with i
copies of the value j € [0,n] and m — i copies of the value 0. We denote these sequences
(0™~ j%). Hence there is an increasing bijection between the join irreducible Irr(J,,,)

and the product of two chains A,, x A,.

Irr(Jpm) = Am X A,
(0™, 4) = (i, 5)

To illustrate Birkhoff’s theorem, note that an order ideal I of A,, x A, can be drawn as
a path in an m x n grid as on the right side of Figure 2.6l The elements of the order
ideal are the points of the grid which lie below the path in the picture. Because [ is
closed downward, counting the number of points in each column that belong to I, with
increasing first value, gives a monotone sequence which completely determines the ideal.

For the path in the picture, the corresponding sequence is (2,3) indicated by a black
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(3, 3)

Join irreducibles

(2, 2)

(1, 1)
B Order ideals

Figure 2.6: J;3 and its poset of join irreducible elements

circled dot on the left. With this example we recover the first definition we gave of J,, ,,

in the introduction of this thesis: it is the lattice of order ideals of an m x n grid.

Theorem 2.1.34 (Dilworth [18]). Let L be a finite distributive lattice. Then
OrdDim(L) = cov(L).

Example 2.1.35. Because of the isomorphism .J,, ,, & J,,,, we can assume that m < n.
The definition of distributive lattice .J,,, already took the form of an embedding into
R™ giving a clear upper bound to the order dimension of X. The elements covering the
largest amount of other elements are the ones which correspond to increasing sequences
which do not start with zero. They cover exactly m other elements. This shows that in

general we have OrdDim(.J,,, ,) = cov(J,, ) = min(m,n).
The theorem does not in general hold for lattices that are not distributive.

Example 2.1.36. The diamond lattice (left, Figure has maximal covering number 3
but order dimension at most two. To compute this upper bound for the order dimension
notice that the partial order relation on this poset is the intersection of the two following
total order relations: {f) <zx<y<z< i} and {@ <z<y<zx< i}

We now turn to properties that are weaker than distributivity. We say that a lattice is
join semidistributive if whenever x,y,z € X satisfy t Vy =xVzthenxV (yAz) =2z Vy.
Dually, a lattice is meet semidistributive if whenever z,y, 2 € X satisfy © Ay = x A 2z then
zA(yVz)=xAy. We say that a lattice is semidistributive if it is both join and meet

semidistributive.
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Figure 2.7: Tree rotation

Example 2.1.37. The Tamari lattices form a famous infinite family of semidistributive
lattices. In this thesis, we choose to define Tamari n as the set of binary trees with n + 1
leaves and order generated by tree rotations as depicted in Figure 2.7, Tamari 3 is the
pentagon on the right of Figure For a proof that the Tamari lattice is semidistributive
see [57] or [26].

Example 2.1.38. The diamond lattice on the left of Figure[2.5]is not join semidistributive
aszVy=1=xzVzwhilezV(yAz)=z%#zVy. A similar calculation shows that it is

not meet semidistributive.

Recently, a representation theorem in the spirit of the Birkhoff’s fundamental theorem
for distributive lattices was proved for semidistributive lattices [48]. Semidistributive
lattices also have a pattern avoidance characterization extending Theorem [2.1.29] [38].

2.2 Derived representation theory

This section is taken from [61]. Here is a naive motivation to the following section. We
construct the homotopy category and the derived category because we want to replace
complexes by projective resolutions. In doing so we lose the abelian structure so we

introduce triangulated categories.

2.2.1 The derived category

Let A be an additive category. A complex is a sequence of objects C' = (C;);ez of A
along with a sequence of morphisms (0;);ez with 0; : C; — C;_1 such that 0; 0 9,41 = 0.
Morphisms of complexes are sequences (f; : C; — D;); such that f; o 8&1 =08, 0 fiy1
This gives a category C(A). The shift functor sends a complex C' = ((C;);, (0;):) to a
complex C" = ((C});, (0});) where

Cz/ = 01;1 and 8; = —81-,1

similarly shifting morphisms of complexes. We write it as [1], its adjoint as [-1] and the

successive compositions of either of them [n] for any integer n. The homotopy relation is
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defined on maps but helps us compare objects as well. Let f,g : C' — D be morphisms
between two chain complexes. We say that f and g are homotopic if there exists a map
h of degree 1 such that

0P,y 0 o+l 108 = fu— g

It is standard to write f ~ g when ¢ is homotopic to f and it is easy to check that it
is an equivalence relation. A map f : C' — D is a homotopy equivalence if there exists
g : D — C such that

fog~idp and go f ~ idg

The homotopy category Ho(A) of A is defined to have the same objects as C'(A) and
morphisms
HOIHHO(A)(C, D) = HOIDC(A)(C, D)/ ~

Composition of maps is inherited by the composition of the category of complexes. There
is an essentially surjective functor from the category of complexes to the homotopy cat-
egory, sending objects to themselves and maps to their equivalence class. The homotopy
category, together with this functor satisfies a universal property. In addition to that,
the embedding of A in C'(A), as complexes concentrated in degree zero, extends to the
homotopy category and is full and faithful. If the category A is in fact abelian we denote
the homology of degree i of a complex C' = ((C;);, (0;):) by Hn(C) = Ker(0;)/ Im(0;11).

For any map of chain complexes f : C' — D we have a well defined map on homology:

It is easy to check that H,, is a functor from C'(A) to the category of abelian groups. Two
complexes are quasi-isomorphic if there exists a map f : C' — D such that for all ¢ € 7Z,
the map H;(f) is an isomorphism. The morphism f is then called a quasi-isomorphism.
Let f : C'— D be a morphism of chain complexes. Then the mapping cone of f is the

complex whose objects are Cone(f), = C,_1 & D,, with connecting maps

_ag_l 0
fn—l 6’nD
Cn—l ¥ Dn ? Cn—Z S¥ Dn—l

The mapping cone is a neat construction that can help us identify quasi-isomorphisms

as well as homotopy equivalences. It also plays an important role in the triangulated
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structure of the derived category which we will define shortly.

Fact 2.2.1. A map f : C — D is a quasi-isomorphism if and only if Cone(f) is ezact.

The map f is a homotopy equivalence if and only if Cone(f) is zero homotopic.

We give a quick construction of the derived category of the abelian category A. We
omit set theoretic considerations and simply point out that when A is the category of
modules over an algebra, quasi-isomorphisms form a locally small multiplicative system
[59, Remark 10.3.6], [25, Chapter 1]. The derived category of A is written D(.A), has
for objects the complexes of objects in A. For its morphisms consider the triples ¢ :
X & 75 Y where v is a quasi isomorphism and « is a homotopy class of morphism of
complexes, for any pair of complexes X and Y. We say that ¢ : X L7 2y covers 10}

if there exists a map v making the following diagram commute

XVI/TV\Q/)Y
PN

We say that two triples are equivalent if they are both covered by the same triple. The
vector space Homp(4)(X,Y") is obtained by quotienting the space of triples by this relation
which is indeed an equivalence relation.

In the category of complexes we can consider the full subcategories of complexes
bounded on the left, bounded on the right or just bounded which we write respectively
Ct(A), C~(A) and C°(A). Their essential image in the homotopy category are written
Ho'(A), Ho (A) and Ho’(A) and in the derived category D*(A), D~(A) and D°(A).
We will also consider the subcategory C'~°(A) of complexes bounded on the right with
bounded homology and its essential image in the homotopy category Ho *(A). The

derived categories together with the functor

u : Ho(A) — D(A)
(Ci)i = (Ci)s (2.3)
(f: X =Y)— (X2 x Ly

satisfies a universal property. This functor restricts to the subcategories enumerated
above. Moreover the functor A — D(A) sending modules to complexes concentrated in
degree zero is fully faithful.

When A is a finite dimensional k-algebra, we can consider different base categories
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related to finiteness conditions: the category of left modules over A, denoted A-Mod, the
category of finitely generated left modules, A-mod, the category of projective modules
A-Proj, the category of finitely generated projective modules A-proj, etc. The categories
of projective modules and of finitely generated modules play an important technical role in
the derived representation theory of finite dimensional algebras which we will now describe
succinctly. We call projective resolution of a complex C' a complex of projective modules P
with a quasi-isomorphism P — C'. It is easy to show that projective resolution of modules
are projective resolutions of complexes if we see the module as a complex concentrated
in degree zero. Just like for modules we would like every object of the bounded derived

category to have a projective resolution. We have the following result

Proposition 2.2.2. Let A be an algebra and X an object in D~ (A-Mod). Then X has

a projective resolution.

They are useful in part because they make some hom spaces easier to compute. Using
cones to characterize quasi-isomorphisms and homotopy equivalences we can show that a
complex of projectives is exact if and only if it is zero homotopic and deduce the following

proposition.
Proposition 2.2.3 (|54, Tag 064B|). Homp,(P,?) = Homp(P,?)

Combining Propositions|2.2.2|and [2.2.3|we have the following equivalences of categories

Theorem 2.2.4 (|61}, Proposition 3.5.43|). Let A be an algebra. Then the functor from
equation induces equivalences

« D~(A-Mod) = Ho™ (A-Proj)
- D"(A-Mod) = Ho *(A-Proj)
and if A is noetherian over a commutative ring
« D~(A-mod) = Ho™ (A-proj)
« D'(A-mod) = Ho (A -proj)
In each case, the adjoint is called the projective resolution functor.

Dual results hold for injective resolutions.


https://stacks.math.columbia.edu/tag/064B
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2.2.2 'Triangulated structure

In the previous section we fixed an abelian category A. What structures do the category
of complexes, the homotopy category and the derived category have? While C'(A) inherits
the abelian structure of A by computing kernels and cokernels degree by degree, this does
not apply to Ho(A) and D(A). They are instead triangulated. In this subsection we recall
the definition of a triangulated category as well as the properties we will use in the thesis
before spelling out the triangulated structure of the homotopy and derived category of an
abelian category A.

Let C be an additive category and let T" be an additive self-equivalence of C. A triangle
is the data of three objects X,Y and Z along with morphisms

XSy S 757X,

A morphism of triangles is a commutative diagram of the form :

2 Y s 7 — L s TX

b,k b

LA N N )G

al

X
le
pe

A morphism of triangles is an isomorphism if the maps £, 7 and ( are isomorphisms in
C. An additive category C along with a self equivalence T" and a class of triangles called

distinguished is a triangulated category if it satisfies the following axioms.

Trl Any triangle isomorphic to a distinguished triangle is distinguished as well. For all
object X, the triangle X My X 50— TX is distinguished. Every morphism

X 3 Y can be completed into a distinguished triangle called triangle above a.

™2 X 25Y 5 225 7X s distinguished then so are Y b7 S 1x 1% TY and

_7—1 a
Tz S x ey B g

T3 Let X 5V 5 2 25 TX and X' 25 v %5 27 25 TX be two distinguished triangles.
If there exist maps £ and 7 such that n o a = o’ o £ then there exists ( : Z7 — 7’

completing the following morphism of triangles.

o vy Py Y 1x

g

/

!/ ﬂl N ZI 'Y/ >7‘!)(/

~
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Trd Given X; =% X, 2% X, write as = a; o a3.With these 3 morphisms we can form

the following three triangles using TR1

X1—>X25—3>Zg’y—3>TX1
X, — X5 2 7, 27X,
Xy Xy 2 72, I TX,
which are connected by a certain number of morphisms in C. Axiom TR4 states

that this diagram can be completed into the following commutative diagram in

which only 41, 02 and d3 are new morphisms. They form a distinguished triangle.

X, -2 x, B g X,

lid lﬂél 01 id

X, =2 x, 2 22 REEEN TS(I
la3 l@'d 5 T(as)

X, —2y X, 21 no T:)’('Q
3 T(B3)

Tég SN TZ,

Lemma 2.2.5. Let C be a triangulated category and let

B

X >y sy 7 — L s TX
l& ln lc lTé
X ey B oy

be a morphism of distinguished triangles. If two of the vertical morphisms, &, n or (, are

1somorphisms, so s the third one.

In this thesis, the triangulated categories that we consider will be the homotopy cate-
gory and the derived category of a finite dimensional algebra. More precisely, the homo-
topy category of an additive category A, equipped with the shift functor and distinguished

triangles isomorphic to the sequences
cLp- Cone(f) — C[1]

is triangulated. For any abelian category A, the categories D(A) as well as its bounded
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on the left or on the right counterparts, are triangulated with the suspension functor
inherited from the corresponding homotopy category and distinguished triangles being all
triangles in D(A) (respectively D(~A), D*(A), D*(A) ) which are isomorphic to

C L D — Cone(f) — C[1]

where f is a morphism in the homotopy category [58]. The following fact implies that
this triangulated structure is compatible with the abelian structure on the category of

complexes.

Fact 2.2.6. Let 0 = AL B % C = 0 be a short exact sequence of A complexes. In the

derived category we have an isomorphism of triangles given by the diagram below.

BN
<
~
Sy
Q
~
Q
3
[}
Q
N
o
=

A—L4 B Cone(f) —2— A[l]
Consider the so called stupid truncation above i of a complex C', defined by

C, ifn>i _ ) 0, ifn>1
(05:C)p = with boundaries 9/, = (2.4)

0 otherwise 0 otherwise.

We define the stupid truncation below i, 0<;C in a similar way.

Example 2.2.7. A complex C' and its truncations above and below a certain index fit in

a short exact sequence as follows

O'Sz;lc > 0 > > 01;1 E— Cl;g _— ...

} ! ]

0
.—)CZ‘_H y >Ci—l—>ci—2—>'--

=

[ | ]

0>;C . — Cig > C; > 0 > 0

The sequences in each degree are clearly exact. Using Fact [2.2.6] we get that the cone
of the map f is quasi-isomorphic to the truncation o>;C.We thus have the following

distinguished triangle in the derived category

agi,lC —C — O'ZZ'C — US,;,IC[l]. (25)
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2.2.3 Structure with functors

Let A and B be abelian categories with enough projectives and injectives. Let F' : A — B
be an additive covariant functor. Because F(9?) = 0 = F(9)?, F induces a functor
at the level of complexes defined by setting F(C),, = F(C,) and 9F©) = F(9%). If f
and ¢ are two homotopic maps from a complex C' to a complex D, then their images
under F' are still homotopic because F' is additive. Hence F' also induces a functor at the
level of the homotopy category. Using projective or injective resolutions we can extend
F in two ways, but only on the bounded on the right respectively, on the left, derived
categories. Let F' : Ho(A) — Ho(B) be an additive covariant functor. The left derived
functor LF : D~(A) — D(B) is the composition of functors Ngo F o N ;" where Ny is the
inclusion functor from the homotopy category to the derived category of B and N;' is
the projective resolution functor from the derived category of A bounded on the left to its
homotopy category. The right derived functor RE : D*Y(A) — D(B) is constructed in a
dual way. When [ is induced by an additive functor at the level of complexes, its derived
functors are triangulated because it sends cones of maps to cones and thus distinguished

triangles to distinguished triangles.

Example 2.2.8 (derived tensor product). Let (M,0™) be a complex of left A-modules
and (N, 9") of right A-modules where A is a k-algebra. Define the total complex Tot(N ®
M) by setting
Tot(N ®a M) = @Ni ® My
i€z

with differential:

akTmt(N®AM) _ Z@N ®idyy,_, + (—1)iidNi & a}i\{r

Then the left derived functor of Tot(N®4?) : Ho™ (A-mod) — Ho™ (k-mod) is the left

derived tensor product, denoted
N&%?: D™ (A-mod) — D(k-mod).

Example 2.2.9 (Derived Hom functor). Let A be an abelian category and let and
(M,0M) and (N,0") be A-complexes. Define the total hom complex Hom®*(N, M) by
setting
Hom*(N, M) = | [ Hom(N;, M)
i€Z

with differential 9oy ap) (f) = 0" o f — (=1)*f 0 O". Then the right derived functor
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of Hom*(?, M) : Hot(A) — Ho'"(k-Mod) is the right derived hom functor, denoted
RHomu(?, M) : D¥(A) — D(k-Mod).

The category of complexes over an abelian category together with the total hom func-
tor form a dg-category [39]. Dg-categories constitute one of several more modern settings
for representation theory than the one we have chosen in this thesis. However we do not
mention dg-categories further because our result will only use the total hom functor in
the context of the following formula which is straightforward from the definition of the

total hom complex and the homotopy category.
H"(Hom*(M, N)) = Hompe(a) (M, N[n]). (2.6)

As mentioned in the introduction, this will be used in the special case where the target
N is a complex concentrated in one degree and the source is a perfect complex.

Morita’s theorem gave us a criterion for two algebras to have the same categories of
representations. A similar theorem holds in the derived setting, though it is significantly
harder to prove. The progenerating module must be replaced by the more general and
more intricate tilting object. Fix an algebra A. An object T in D°(A-mod)(=: D(4)) is

a tilting object if it is isomorphic to a complex in Ho’(A-proj) and
« T has no self extensions: Homp-4)(T,T'[i]) = 0 for all i € Z,1 # 0;

« T generates the perfect derived category: the smallest triangulated full subcategory
of D~(A-Mod) containing all direct factors of finite direct sums of T" is Ho®( A -proj)
|61, Definition 6.1.3].

Theorem 2.2.10 (Rickard [50], Keller [41, Chapter 8|). Let A and B be k-algebras which

are flat as modules over k. The following are equivalent
« There is a k-linear triangulated equivalence (F,¢) : D(A-Mod) — D(B-Mod);
o There is complex of B-A modules such that the total left derived functor
X®%?: D(A-Mod) — D(B-Mod)
18 an equivalence of categories;

« There is a tilting complex of B modules T' such that (Hompy 4 (T, 7)) = A.
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Moreover,

D™ (A-Mod) & D™ (B-Mod) < D(A-Mod) = D"(B-Mod)
& Ho’(A-proj) = Ho®(B -proj)
& Ho’(A-Proj) = Ho’( B -Proj).

Finally, when A and B are noetherian, the equivalence restricts to the perfect derived
category
D™ (A-Mod) = D™ (B-Mod) & D™ (A-mod) = D™ (B-mod).

Note that this theorem does not give an explicit construction of X from 7 in the
category of complexes. No such link is known in general however, a theorem of Keller

holds when A is projective as a k-module |61, Theorem 6.4.1].

Serre functor Poincaré duality is a classical result relating the i homology group of
a closed oriented n-manifold to its (n — )" cohomology group using cup product. Serre
duality is a similar result for vector bundles on smooth projective varieties. Grothendieck
duality generalises Serre duality to a larger class of varieties and reformulates the result
through the existence of a so called Serre functor, an endofunctor of the derived category
of coherent sheaves on a scheme. In this thesis, we are interested in the Serre functor in
purely algebraic settings insofar as it encompasses crucial structure of the bounded derived
category of modules over finite dimensional algebras. The notion was first introduced by
Bondal and Kapranov |[§].

A Serre functor S on a k-linear triangulated category with finite dimensional hom
spaces T is a triangulated self equivalence of T such that there is a bifunctorial isomor-
phism

Hom(X,S(Y)) ~ DHom(Y, X),VX,Y € T.

From this definition, one can deduce that a Serre functor is exact and that if it exists it is
unique up to natural isomorphism. The existence of a Serre functor can thus be seen as a
structure on the triangulated category. In fact, it is linked to other well-known structures

as a Serre functor exists if and only if all homological functors are representable.

Theorem 2.2.11 (Happel [29]). Let A be a finite dimensional algebra with finite global
dimension. Then the left derived functor of the Nakayama functor is a Serre functor for
the bounded derived category D°(A-mod).

Later results show that the existence of a Serre functor is equivalent to the algebra
having finite global dimension ([30] and [49]).
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Figure 2.8: The bounded derived category of the quiver As

Notes 2.2.12. The derived Nakayama functor restricted to the category of modules does
not act in the the same way as the original Nakayama functor. Consider once more the
commutative square with a leg from Figure 2.1 where 5 is the maximum of the poset.
In Example 2.1.22] we argued that S5 = 0. To compute Lv(S5), consider its projective
resolution 0 — Py, — P; — 0. Applying the original Nakayama functor in each degree
we get the complex of injective modules 0 — I, — I5 — 0. One can check that it has

homology concentrated in degree 1 making it quasi isomorphic to Sy[1] 2 0.

We mentioned briefly at the end of Subsection [2.1.2]that the Auslander—Reiten transla-
tion is used to describe the category of finitely generated modules over a finitely generated
algebra using almost split sequences. Similar results hold in the bounded derived category
provided we replace almost split sequences by so called Auslander—Reiten triangles. In
that case the derived Nakayama functor composed with a negative shift is to the derived
category what the Auslander—Reiten translation is to the category of modules. It is called
the Auslander—Reiten translation for that reason. It follows that the quiver of the derived

category is also a translation quiver. See |29, Chapter I Section 4].

Example 2.2.13. For finite dimensional hereditary algebras, one can show that indecom-
posable objects of the derived category are precisely stalk complexes of indecomposable
modules. Hence, expanding on example , Figure Elrepresents a portion of the
Auslander—Reiten quiver of the bounded derived category of A; with the Auslander—
Reiten translation indicated by dashed arrows. Note how in each copy of the category of

finitely generated module the translation matches 7.

Example 2.2.14. Let us point out that the computation made in Note [2.2.12] illustrates
how the image under the Serre functor is computed in general. In this thesis, this process
will be used in Section 4.2 when recalling results of Yildirim on the orbits under the Serre

3this drawing is quite famous see |29] for instance
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functor of a family of intervals of the lattice of order ideals of the grid. The projective

resolutions will be exclusively antichain resolutions.

Calabi—Yau Categories While the existence of Serre functor is in itself structural, it
happens that the Serre functor behaves exceptionally well. Recall that a triangulated
category T with Serre functor S is fractionally Calabi—Yau if there exist integers d and [

and an isomorphism of triangulated functors

We say that T is %—Calabi—Yau. The original setting of this property is the following
example which we state without the required geometric notions for its cultural significance

rather than for its usefulness in the rest of the thesis.

Example 2.2.15. Let X be a smooth projective variety of dimension n, let D(X) be its
derived category of coherent sheaves, Kx its canonical bundle. Then the functor Kx®7[n]
is a Serre functor on D(X) and X is n-Calabi-Yau if and only if the canonical bundle is

trivial.

As Kontsevich says in his notes, finite dimensional algebras can be fractionally Calabi-
Yau but not Calabi—Yau without contradicting the existence of the Serre functor. See the
results cited after Theorem [2.2.11] Progress has been made toward classifying fraction-
ally Calabi-Yau categories, as for instance the following theorem on abelian hereditary

categories.

Theorem 2.2.16 (|52]). Let A be an indecomposable abelian hereditary category which is

fractionally Calabi—Yau, then A is derived equivalent to either

« the category of finite dimensional representations rep (Q over a Dynkin quiver ), or

« the category of finite dimensional nilpotent representations nilp A, where A, (n > 0)

has cyclic orientation, or

« the category of coherent sheaves coh X where X is either an elliptic curve or a weighted

projective line of tubular type.

Note that some of the categories mentioned in this theorem are not a priori linked to
geometry. As an example, on Figure we can see how the Auslander—Reiten translation

applied six times yields two times the negative shift functor for equioriented type As
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quiver algebra. This makes the algebra %—CalabifYau as the Serre functor is the shifted

Auslander—Reiten translation like we mentioned above.

2.3 Higher Representation Theory

In Subsection we recalled the language of classical representation theory which used
short exact sequences. In the case of hereditary algebras of finite representation type, we
mentioned the surprising connection with Auslander algebras which have low homological
dimension. In the past 20 years, there has been efforts made towards elaborating higher
homological dimensional versions of these concepts. In this section we give a short account
of the starting point of higher representation theory with the goal of giving some weight
and context to Theorem [El In particular, our presentation will be independent of the
derived setting we introduced in the previous section.

As a motivating result, we want to describe a higher representation theoretic version
of Theorem [2.1.20, To do so we need higher homological versions of the additive generator
of the module category M and of the Auslander algebra. For the Auslander algebra it is
quite straightforward: a finite dimensional algebra I' is n-Auslander algebra if it satisfies

the following inequalities
gldimI’ <n+1 < domDim T

The generalisation of the additive generator is more subtle. Cluster tilting objects appeared
in categorifications of cluster algebras. First we define cluster tilting categories. Let
n > 1 be an integer. Let X be an extension closed subcategory of A-mod and let C be a

subcategory of X'. We call C n-cluster tilting if it is functorially finite and

C={X € X|Ext\(X,C)=0for 0<i<n}
={X € X|Ext\(C,X)=0for 0 <i<n}.

A cluster-tilting module M is a module such that add M is an n-cluster tilting cateogry.
An absolute cluster tilting category (resp. absolute cluster tilting module) is a cluster
tilting category (resp. cluster tilting module) relative to A-mod. Iyama first studied
cluster tilting objects to construct n-analogues of Auslander—Reiten theory where short
exact sequences are replaced by n-exact sequences [34]. In |31] the authors show that if
a cluster tilting object exists and the global dimension of the given algebra is bounded

by n, then the cluster tilting object is unique. Call weak n-representation finite algebras
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which admit an absolute n-cluster tilting objects and n-representation finite a weak n-
representation finite algebra with global dimension bounded by n. Note that the bound
on the global dimension gives the n-analogue of being hereditary. The following theorem

shows in what way the two notions we presented are the correct generalisations.

Theorem 2.3.1 ((n + 1)-Auslander correspondance [33]). For any n > 1, there ezists a
bijection between the set of Morita equivalence classes of n-representation finite algebras,
and the set of Morita-equivalence classes of (n + 1)-Auslander algebras. It is given by
A — T :=Endy(M) for an n-cluster tilting object M of A.

It seems natural to ask whether higher Auslander algebras can in turn be higher
representation finite. This turns out to be quite rare. First we discuss results about a
more general class of algebras. In [36], the author considers n-complete algebras. We
do not give the precise definition but point out that n-complete algebras have n-cluster

tilting categories and that n-representation finite algebras are n-complete.

Theorem 2.3.2 (Iyama |36, Theorem 1.14|). Let A be an n-complete algebra. Let M be
an n-cluster tilting. Then Endy M is (n + 1)-complete.

In particular, if A is n-representation finite then its associated (n + 1)-Auslander
algebras has an (n + 1)-cluster tilting category. It is not absolute in general |36, Theorem
1.19]. By [36, Theorem 1.14], for a 1-representation finite algebra A we can construct
inductively a tower of higher complete algebras denoted A@ [36, Corollary 1.16].

Example 2.3.3. Let n and d be integers. Take as the base of our tower the representation
finite algebra of equioriented type A,,. The tower of n-complete algebras AY constructed
using [36, Theorem 1.14] is in fact a tower of n-representation finite algebras by [36)
Theorem 1.19|. They are called the Higher Auslander algebras of type AW, See Chapter
for the explicit description. This is a special case of a neat construction for n-complete

algebras which works for all finite dimensional algebras of type ADE [36, Theorem 6.12].

2.4 A conjecture of Chapoton

In this section we give more details regarding a conjecture of Chapoton linking com-
binatorial formulas, fractionally Calabi-Yau posets and symplectic geometry which was

mentioned briefly in the introduction.
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2.4.1 Geometric notions

We recall certain geometric notions from [46]. A function f : C* — C is quasi homogeneous
of weights dy, ..., d, and total degree D if for all (z;);<, € C and A € C", we have

FOS A ) = AP f(xy,x). (2.7)

We consider the zero locus of f i.e. its algebraic variety. We say that x € C™ is a singular
point of f if all the partial derivatives of f vanish at x. A singular point is isolated if
there exists a neighbourhood of z in which no other point is singular. From now on we
consider a quasi homogeneous polynomial f with a unique singular point at the origin
and call its corresponding variety an isolated singularity. Its Milnor number, denoted
tiy is the dimension of its n' cohomology group. Its characteristic polynomial is the
characteristic polynomial of the monodromy map which we do not define here. In [46|
the authors compute explicitly the characteristic polynomial and the Milnor number of a
quasi homogeneous isolated singularity f. We give here their formula for the latter and

refer the reader to the original source for more details.

"D —d;

Fukaya categories are categories whose objects are Lagrangian submanifolds of a singular-
ity and whose morphism spaces are characterized by combinatorics on the intersections
of these submanifolds. To make this precise requires a lot of work [53| and we will stay

away from it.

2.4.2 From weights to Fukaya categories

Let (sn)nen be a sequence of nonnegative integers. We fix n and assume that there exists

non negative integers m”,dy, ..., d" . and D" such that the following equation hold
D —dr
Sn=||—. 2.9
1= (2.9)

Please note the similarity with equation (2.8]). To simplify notation we will omit the
n. We call weights of s, the data (di,...,dy,; D). We call the above equation a product

formula. Every sequence of integers has at least one product formula.
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Example 2.4.1. Any sequence of integers (s,)nen can be written

Sn
== 2.1

which gives the weight (1;s, + 1) for all n. We call this the trivial product formula.

The following examples capture the intention behind the definition of product formulas

and weights. In particular a given sequence can have more than one product formula.

Example 2.4.2. Consider the Catalan sequence defined for all n € N by ¢, = %H(gg)
Catalan numbers have a product formula as follows
ron 42—
S | e 2.11
g ll Z (2.11)

with weights (2,...,n+1;2n+2) or (2,...,n;2n+2) as the fraction Z—E can either be kept
or omitted. We will come back to discuss this choice after having discussed Chapoton’s

conjecture in its entirety.

Example 2.4.3. Fix a positive integer m. As mentioned in the introduction the main ex-
ample of interest for this thesis is the sequence (m;;") neN which has weights (1,...,m;m+

n+1)or (1,...,n;m+n+1). Note that the roles of m and n are symmetric.

Conjecture 2.4.4. Let (s,)nen be a sequence of nonnegative integers. Suppose that for
all n there exists weights (dy, ..., dy; D) for s,. Then there should exist a family of finite
posets (P )nen such that for all n, P, has cardinal s, and the bounded derived category of

P, is %-C’alabifYau where the integer C' is given by the formula

i=1

Moreover, D°(P,) should be equivalent to a type of Fukaya category associated with a
generic isolated quasi-homogeneous singularity with variable weights (dy, .. .dy,) and total
weight D. In particular, the Milnor number and the characteristic polynomial of f are
determined by the weights of the sequence using Milnor and Orlik’s formula. Furthermore
this correspondance should be compatible with the natural monoidal structures at play,
namely with cartesian product of posets, tensor product of triangulated categories, and the

monoid structure on Weights.

Here is a short historical timeline of the progress made towards this conjecture.
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1998 Maxime Kontsevich defines the notion of fractionally Calabi—Yau for triangulated
categories with a Serre functor categories in a course at the Ecole Normale Supérieure
in Paris [42].

1999 Jun-Ichi Miyachi and Amnon Yekutieli show that the bounded derived categories

of Dynkin quivers are fractionally Calabi—Yau by computing their Picard groups.

2007 Chapoton shows that the Coxeter transformation of the Tamari lattice has finite

order using operads [12].

2012 Chapoton conjectures, among other things that the bounded derived category of
the Tamari is fractionally Calabi-Yau [13].

2018 Yildirim show that the Coxeter transformation of the order ideals of cominuscule
posets of type A, B, D and E are of finite order [60].

2021 Rognerud shows that the bounded derived category of the Tamari lattice is frac-

tionally Calabi—Yau using exceptional intervals [51].
2023 Chapoton publishes his conjecture on fractionally Calabi—Yau posets [14].

2024 This author proves that the bounded derived category of the order ideals of grids
are fractionally Calabi—Yau and derived equivalent to some Fukaya Seidel Categories
related to type A [27].

More examples satisfying these conditions, for which the conjecture has no answer so
far, can be found in [14]: alternating sign matrices, green mutation posets for cyclic quiv-

ers, the West Family, the Tamari-intervals family as well as a plethora of small examples.

Notes 2.4.5. Like with any unproven conjecture, one can wonder whether the current
formulation of Chapoton’s encompasses the correct scope. Here are some questions that
I find relevant but have not had the opportunity to explore further. Some of them were
asked during talks given about this topic at the GATo seminar in Amiens or at the
CHARMS summer school in Versailles in the summer of 2024.

« Given the examples that have been proven so far, can we expect the posets P, to

be lattices? Or even semidistributive lattices?

« Because there can be more than one product formula on a sequence, are there
product formulas that are better than others? Is it possible to rank the product

formulas of a given sequence in a systematic way? Can we say somehow that one of
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the weights for the Catalan sequence from Example is better than the others
including the trivial weight?

« Is it possible that we should only consider sequences where the integer m depends
closely on n, say m =n?

Finally, we would like to record here a remark made by Chapoton at the CHARMS
conference in Strasbourg in 2024: when D = 2k, adding a factor % is not very important

from a geometric point of view.
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Chapter 3
Antichain modules

This section contains technical results about certain classes of antichain modules, their
morphisms and extensions. The main one gives a way to study the fractionally Calabi-Yau
property on lattices. Once the correct antichains are identified, the proof is formal. Some
lemmas rely on observations about (co)simplicial sets [54, Tag 019H| and their associated

chain complexes.

3.1 Boolean antichains

Let C be an antichain of size r in a lattice L and M§ its associated antichain module
below a € L. Note that in degree i of the projective resolution P of Mg there are (7)
indecomposable components in direct sum. If one forgets the modules, the complex has
the shape of the power set of C, however the indices of the modules in each degree are

not necessarily in bijection with the lattice (P(C'), C,U,N) (see Figures [3.1] to [3.3).

1 C3 C1 C3

ci1/\Ncyg=c Ncg

Figure 3.1: Boolean an- Figure 3.2: Strong, not in- Figure 3.3: Antichain
tichain tersective, antichain which is neither

Examples and non examples for key properties of antichains

To make this statement precise, let us introduce four conditions on C' as an antichain

of [0, a] for some a € L.

47
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Inclusive antichain For all subsets S and S’ of C, if AS < AS’ then " C S.
Intersective antichain For all subsets S and S’ of C', we have (AS)V (AS’) = A(SNS).

Strong antichain For all S, S’ subsets of C' of same cardinal, AS and AS’ are incompa-
rable i.e. if AS < AS’ then S = 5.

Boolean antichain C is both inclusive and intersective.

See Figures [3.2] and for examples of strong, intersective and boolean antichains in
different small lattices. Figure gives a non example. Figures shows how a strong
antichain can be not intersective. Please note that intersectivity depends on the choice
of a top element o whereas inclusivity and strength do not. This is essentially because
the join of the empty set is the maximum of the ambient lattice. Hence it is important
to compute the meet and join operations in the interval [ﬁ, al. Note also the following

lemma.
Lemma 3.1.1. An antichain is inclusive if and only if it is strong.

Proof. The inclusivity condition implies the strong antichain condition by taking the
subsets S and S’ with the same cardinal. To see the converse, assume that the antichain
C' is a strong antichain and let S and S’ be two subsets of C' such that AS" < AS.
Suppose at first that |S| +n = |S’| with n > 0. Then there exist s1,...,s, € S\ S. Set
S" =SU{s1,...,S,}. Because the inequalities AS" < AS and AS" < A{sy,...,s,} hold,
we have

NS < (AS)A (A s1,...,8.}) = AS".

Because |S’| = |5”| and the antichain is strong, we have S’ = S” and so S C §’. Next if
|S| = |S’| + n with n positive, then take sq,...,s, in S\ S’. Then we have

AS" = (AS)) A (A {s1,...,8,}) < AS.

The antichain is strong so S = S”. Then S" C S so AS" > AS and thus AS" = AS. Using
the first part of the proof we get S = S’. This contradicts the assumption on the integer
n. ]

Remark 3.1.2. The strong antichain condition implies that for each n, the set
{AS|S C C with |S| = n}

is an antichain. This condition is strong enough for the main result (see [3.5). However it

is not strong enough for computing morphisms sets.
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Denote (C)¢ . the lattice generated by the elements of C' and « in the sublattice
[0, a] of L, equipped with the lattice operations of L. The following lemma motivates the

terminology.

Lemma 3.1.3. An antichain is boolean if and only if the map

(P(C),N,U) & ((C)e 0, ALV)
S — NS

1s a lattice anti-isomorphism.

Proof. Assume that the map ¢ is a lattice anti-isomorphism. Then C, is intersective
because ¢ sends N to V. Now consider S, S” C C such that AS < AS’. This is equivalent
to the following equality

AS = (AS) A (AS).

The right hand side is equal to A(S U S’). Because ¢ is a bijection, S = S U S’ meaning
that S C S. Thus C is inclusive. Conversely assume C' is both inclusive and intersective
below a. The fact that ¢ sends U to A is true for any subset of a lattice. The intersection
property makes ¢ send N to V. To see that ¢ is injective, note that if AS = AS’ then
the inclusion property forces S = S’. To see that the map is surjective, notice that the
image of ¢, Im(¢) = {AS|S C C} is a lattice, using the properties we just exhibited.
Moreover, any sublattice of [0, a] containing C' contains Im(¢). It is thus the sublattice
of [0, o] generated by C and «, i.e., (C)§ A =1{NS|S C O} and ¢ is surjective. O

Remark 3.1.4. Following a question from one of the reviewers of this thesis, it became
apparent that if an antichain is intersective below an element o € L then it should be
automatically strong as long as it is not the singleton {a}. In particular, intersective and
boolean should be the same thing in all of the cases we consider. This observation would
make the first part of the previous proof slightly shorter as only the intersectivity needs
to be checked. This would not change the statements or the proofs that follow. Moreover,
the distinction between strong and boolean antichains remains valid. In order to keep the
changes to this manuscript minor, we do not include the proof of this new claim here.
However, we can produce it upon request and intend to include it in further works when

needed.
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3.2 Global dimension

In this section we use the above vocabulary in the context of join semidistributive lattices.
The importance of join semidistributive lattices over meet semidistributive lattices comes
from our choice of orientation for the Hasse diagram. If we had picked arrows to go the
other way around, we would have had a result on meet semidistributive lattices. With

the current conventions, what holds is a dual result for injective resolutions.

Theorem 3.2.1. Let L be a finite join semidistributive lattice and k a field. Then the

simple modules over Ax(L) are strong antichain modules.
As a corollary we extend a result from [37].

Corollary 3.2.2. Let L be a finite join semidistributive lattice with at least two elements.
The global dimension of the incidence algebra of L is given by the maximal covering

number of L.

Join semidistributive lattices appear in representation theory as lattices of cluster
tilting objects or of torsion pairs [17]. The proof of the result is a straightforward gen-
eralisation of the proof in [37], but it does apply to classes of interesting new examples.
Moreover just like in [37], the reason why this result is interesting is mostly the following
corollary. Unlike in [37], because the lattice is not distributive, the maximal covering

number is not the order dimension of the lattice.

Corollary 3.2.3. The global dimension of the incidence algebra of a semidistributive
lattice over a field k is independent of the field.

For the convenience of the following proof we say that a subset S of an antichain C
is minimal if for any subset S" of S, we have AS" > AS. As the lattice is finite, such a

minimal set, while not unique, but can always be obtained by removing elements from S.

Proof of Theorem[3.2.1 Let L be a lattice and let x be an element of L. Consider the set
C ={ci,...,c,} of elements of L covered by z. They form an antichain and its associated
antichain module below x is the simple module S,. Let S; and S5 be non empty subsets
of C' and assume that AS] < ASy while S5 € S; i.e. that the antichain is not strong. We
will show that the lattice is not join semidistributive. We assume 57 is minimal. If S has
only one element, then AS;y is covered by x so AS; = ASy and Sy = S; because C' is an

antichain. So we assume that S; has at least two elements. By our original assumption,
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there exists k € Sy \ S;. Hence for ¢ € Sy, we have ¢ > AS; and A(S \ {c}) > AS;. If
moreover A(Sy \ {c}) £ k, then we are done:

ANSI\{c})VE=2=cVE>EV(ASI\{c})ANc)=AS1 VE=EF.

However, it is not always true that A(S;\{c}) £ k. If not, replace S; by S;\{c} and apply
the same reasoning. Because S\ {c} is strictly smaller than S} and the antichain is finite,
this process ends either when A(S; \ {c}) £ k or when S; = {c1,c2}. In that case, the
elements of C' are covered by x, S; is minimal and we have kV ¢y = kVey > kEV (¢ Aca).

Like before this means that the lattice is not join semidistributive. O]

The next proposition is true for any lattice and is one of the interesting upshots of the

definition of strong antichains.
Proposition 3.2.4. Antichain resolutions of strong antichains are minimal.

Proof. Let C' be a strong antichain. To see that the antichain resolution P¢ is minimal,

we need to argue that the maps

P Ps 2 Im(dy)
|S|=k

are projective covers for each degree k. In other words we show that the kernels of these
maps are superfluous. Fix k. If the kernel is zero, there is nothing to prove. Hence assume

that it is not and consider a module N such that

Ker(ak) + N = @ P/\S
1S|=k

The module on the right is generated by the elements e g with |S| = k. Because the
antichain is strong, the elements AS with |S| = k cannot be compared and they each
appear in a different direct summand. Moreover, because the quiver has no oriented
cycles, the only path that goes from AS to AS is the lazy path. Hence for each S with
|S| = k, ens is in Ker(0g) or in N as it cannot be written as the sum of two elements.
Because we assume that the kernel is non empty and we are considering a projective
resolution, we know that Ker(dy) = Im(Jg11). Recall from equation that the image
is generated by paths associated to relations AS < A(S — {i}) of the posets. Because
the antichain is strong we always have AS < A(S — {i}) so that the lazy paths are not
in Ker(0y). We conclude that they are in N and that N = @\Slzk P,g, completing the
proof. n
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Figure 3.4: Covering relations from the maximum of Tamari 4
Proof of Corollary[3.2.3. The arguments for this proof are identical to those of [37]. We
reproduce them here for the convenience of the reader. Let x be in L. The simple module
S, has an antichain resolution of length cov(z), the size of its associated antichain. By
Theorem this antichain is strong and by Proposition the resolution is minimal.

The projective dimension of the simple module S, is the covering number of . Hence, as

recalled in Theorem [2.1.16| gldim(L) = max,¢r(pdim S,,) = cov(L). O

Example 3.2.5. Recall from Example the Tamari lattice which is semidistributive
so in particular join semidistributive. Using its description in terms of binary trees ordered
with tree rotations, it is easy to see that from each tree there are at most n — 1 possible
tree rotations going up and down from the vertex. Moreover, there is one element of the
lattice which has n — 1 coverings, that is the minimum of Tam,,. Dually, the maximum
is the unique element of the lattice which covers exactly n — 1 trees. See Figure 3.4 It
follows that max{|cov(x)| for x € Tam,} =n — 1 = gldim(Axk(Tam,,)).

Example 3.2.6. The lattice J,,,, is distributive as a lattice of order ideals. The result
of |37] suffices to compute the global dimension. In [2.1.35| we showed that cov(J,,,) =
min(m,n) which is also the order dimension. Hence the global dimension of .J,,,, is

min(m, n).

3.3 Morphisms

In this section we fix an antichain C' below an element « of a lattice L as well as an
interval I = [a,b] of L. If C' is boolean more can be said about the total hom complex

Hom% (P&, I). Recall the notation from equation (1.4)). Note that

k ifzel
ey 1= (3.1)
0 otherwise
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as a special case of equation (|1.5)). Denote by E the set {S C C|AS € I}. A projective
module P,g appearing in the projective resolution Pg can contribute to the total hom if
and only if S € E. Note that C is finite hence its set of subsets is finite. Assume that
E is not empty otherwise the total hom complex is zero. If the antichain is intersective,
and S and S’ are in E then

a<ASUS)<ASNS) <D

meaning that SU S and S NS’ are in F as well. It follows that E has a largest element

UserS = Sy as well as a least element NgepS = S,,. Moreover, if S € [S,,, Sy| then
a< NSy <AS<AS,<b

hence S € E. There are no other elements in £ and we have proved the following lemma.
Lemma 3.3.1. If C is a boolean antichain then E = [S,,, Sn].

Remark 3.3.2. Following Remark we point out that the fact that C' is inclusive
should be a concequence of the fact that C' is intersective which is in turn equivalent to

C being boolean. This remark does not change the validity of the statement above.

To describe the total hom complex, Hom% (Pg&, I), we write m = |S,,| and M = |Sy|.
For each degree m < i < M there are exactly (]\f__mm) subsets S of C' with cardinal 7 in F.

Hence, by equations (1.4) and (3.1) the complex Hom% (P8, I[0]) has shape:

M—-n

0kl k) ke, (3.2)

This is precisely the shape of the simplicial module associated to the standard simplex.
It remains to see that the boundary maps match the standard simplex as well. In each
degree the map is post composition by the boundary map of Pa. It sends a map defined

by a vector (fs)|s=: to a vector (gs)|s/|=i+1 described by

0 it S¢S,

gs' =
(—1)<(52) . fg  otherwise,

where |z|s = [{y € S'|y < x}|. Indexing the vector elements by their complements in C

and writing the basis vectors e; we get

ey Y (—D)re;

zeJ
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Like in the proof of |37, Theorem 2.2|, we have an isomorphism

Hom®y (P&, I) 2 (k {2 k)M =[], (3.3)
The left hand side is a Koszul complex over the base field k. As a tensor product of
acyclic complexes, using Kiinneth’s formula (|10, Chapter 6.3] or [59, Exercise 1.2..5]), it

is either acyclic or concentrated in one degree when Sy, = .5,,.

Proposition 3.3.3. Let C' be an antichain of a lattice L and let I C L be an interval.
Suppose the set E = {S C C| AN S € I} is an interval of the lattice P(C). Then there
exists at most one integer p such that Homuo(Me, I[p)]) is non zero. When such an integer

exists, the hom space is one dimensional.

Proof. Given the previous calculations and remarks, the result follows from equation

3. =

Moreover we know that such a degree exists if and only if the set E is a singleton i.e.
there exists a unique S C C such that AS € I. In this case p = |S|. Combining this
proposition with Lemma and the isomorphism u of equation (1.3) we have proved

the following theorem.

Theorem 3.3.4. Let C be a boolean antichain of a lattice L . Let I C L be an interval.
There exists at most one integer p such that Homps(Mc, I[p]) is non zero. When such an

integer exists, the hom space is one dimensional.

Example 3.3.5. Consider the lattice in Figure [3.2] that we reproduce here for the con-

venience of the reader and the strong antichain C' = {c;, ¢, c3} below 1.

(CQ/\C1)
\/(63 /\Cl)

Its associated module is the simple S; and its antichain complex is given by the

following diagram. The red arrows represent the components of the boundary maps.
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When the sign is not indicated, it is positive.

PCl/\CQ _____ ” Pcl

21 S A S
- -7 ~ -7 N
_41/_‘ " EB />\\ — @ AN
- TS -7 M /’—‘:
0 —— Popesres — Poiney —— P, > P s 0 (3.4)
\\ — \\ //? />(
e e o
S0 e ~ Pl

ch/\cg _____ ” PC3

We consider the element x = (¢; A ¢3) V (1 A ¢3) and the interval I = [¢; A ¢g, 2] of
the lattice. Please note that this interval is in fact the set {c; A ¢, 2} Hence the set
E ={S CC|ANS € I} is the singleton {{c1,c2}} which is an interval. So Proposition
applies and dim Hompy,(P¢, I[2]) = 1 while for any other shift of the interval it is 0.

Any non zero morphism in degree two is proportional to the following.

P6—>P01/\C3@P01/\02€BPC2/\63 —>PC1€BP62€BPCB —>Pi

l lpcwg—ﬂ l

0 i > 0

By equation (|1.5), and because no other subset S” of C' is in E, this map is not zero

homotopic. Moreover no morphism of degree different from two exists.

Example 3.3.6. Consider the lattice from Figure [3.1, which we reproduce here for the

convenience of the reader, and the antichain C' = {¢, o} below 1. Tts associated antichain

C1 C3

module is the interval [cs,1]. Consider moreover the interval I = [0,¢;]. Notice that
the ambient lattice is isomorphic to the power set of a set with three elements. The
sublattice spanned by the elements of the antichain and 1 is the interval [c1 A ¢, i] By
Lemma the lattice is boolean. Theorem [3.3.4] applies. We can check that the set
E ={S CC|AS €I} is the interval [c; A ¢, ¢;]. In that case, dim Homy,(Pc, I[p]) = 0
for all integer p as F is not a singleton. Because this example is small we can notice how
any morphism of complexes from P¢ to I[1] would be forced to be zero by the non zero

composition of non zero morphisms of intervals P. ., = P., — I. Additionally, while
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there exists a non zero morphism of complexes from Pq to I[2] it is made zero homotopic

by the non zero morphism of intervals P., — I.

3.4 Truncations

Recall the stupid truncation o>; R of a complex R = ((Rn)nez, (On)nez) defined in equation
(2.4) In this section we fix a strong antichain C'. To make notation lighter we do not say

if it is below some «, though the two lemmas below hold in both [0, a] and L.

Lemma 3.4.1. With C as above and notation from the previous sections, for all r =
|C| > i >0 there is a bijection

d . EndA(('Pc)@'fl) — HomHo(UziPCa (,PC’)zfl[Z])
f — fo al[l]

Proof. 1f i =0, P;_1 = 0. We assume r > ¢ > 0. The antichain is strong so the indices
of the indecomposable summands of (Pg);—1 = @‘ §=i—1 Frs cannot be compared. Thus

the endomorphisms of this module decompose as

f= @ As - idp,. (3.5)

|S|=i—1

By projecting on the summands of the target, it suffices to show that there is a bijection

® : End(P) — Homp,(0>;Pc, Pli])
f — fompodi]

for all P = Pg with S C C of cardinal i — 1. Write S = {s1,...,s;_1}. The morphisms
on the right hand side are of the form:

0;
@PAS/—+I>®P/\S/—>O

S/ |=i+1 _|8=i
‘ ‘ /// | | ) (36)
¢ 0
lk// 0 l v’
0 > P > 0

The dashed arrows represent potential homotopy maps. There cannot be a non zero

homotopy so
HOIIlHO(O'ZZ'R, P[Z]) = HOIl’lc(O'ZiR, P[Z])
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The relation 9% = 0 implies that ® is well defined. An element of End(P) is either 0 or
an automorphism. Moreover, considering the specific form of the boundary maps of the
complex P¢ in equation (1.6 ), the projection of 9; on the factor P of its target is non
zero. Hence if f is non zero then ®(f) is non zero and ® is injective.

It remains to see that the map is surjective. Notice that there is an isomorphism
between Home (Pe, Pli]) and Home (o> Pe, P[i]) as any map ¢ as in equation also
yields a map from the untruncated complex to P[i| and vice versa. The map ® is surjective
if and only if every element of Home(Pe, PJi]) is zero homotopic. Because the antichain

is strong we have
E={S8"CcCOIANS <AS}={5"CC|SCS}

where E' is the set of contributing subsets of C' in the total hom. It is an interval. The
assumptions on ¢ and the cardinal of C' ensure that E contains at least two elements. By
Proposition [3.3.3| we have

Homy, (P, Prgli]) = 0.

This concludes the proof. n

We consider examples on small (non distributive) lattices.

Example 3.4.2. In the diamond lattice (Figure[3.3), the antichain {cs, ¢3} is strong. Its
associated antichain module below 5V ¢s = 1 (the maximum of the lattice) is the interval

[, 1]. Tts antichain projective resolution is

P,
R0=>P2 o %P . —0.
P

c3

By Lemma the maps from o>, R to Pi[1] are all proportional to 0.
However, without the incomparability condition, the result fails.

Example 3.4.3. We now give a non example. In the diamond lattice (see Figure (3.3]))
consider the antichain {cy, co, c3} under 1. Its associated module is the simple S; and its

boolean resolution R has the same shape as in equation (3.4]). However this time we have

Cl/\CQ/\C3261/\CQICl/\C3:Cg/\C3:0.
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So the antichain is not strong and three copies of F; appear in degree 2 and one in degree

3 of this chain complex. Consider the morphism of modules

Pcl/\cz
s> Lgl 9. Lgl Lgl
¢ : P01/\03 Pcl
@
PCQ/\C3
One checks the equality
—id,
ody= [ 2.8 @] x | idy | =0
—id,

meaning that ¢ defines a morphism of complexes concentrated in degree 2 from o>2R to
P,, which is a summand of R;. The map ¢ has support all three copies of P, present in
degree 2 whereas 71 o Js is supported only by the copies associated to ¢; A ¢o and ¢; A c3.

This means that ¢ cannot be factored through m; o 05.

Lemma 3.4.4. Let C' be a strong antichain. Then
dim HOmHO(PC,O'217Dc) S 1.

i.e. the set of morphisms of complexes up to homotopy from Pe to 0>1Pc is at most one

dimensional.

Proof. If r = |C| = 0, then 051P¢ = 0 and the space of morphisms in question is 0
dimensional. Assume that r is strictly bigger than 0. The setting of the lemma can be

illustrated by the following diagram

T @Ps/\t—>@Ps—>Pi

s,teC

_ seC L
// 4
Ve Ve
l 70 l 70
x’ %4

— P rn— PP —0

s,teC seC

The antichain ' is inclusive so the projective indecomposables in degree i are associated

to elements which are either bigger than the ones in degree ¢ + 1 or cannot be compared
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with them. Hence there are no non zero maps of degree 1. We thus need to describe the
maps between Pe and 0>1P¢ in the category of complexes. For k € [1,7] both complexes

have the same components so morphisms of complexes are determined by morphisms of

modules
¢ € End (€D Prs)
sce,
|Sl=k
satisfying the relation
@k © Okt1 = Ok41 © i1 (3.7)

Since C'is a strong antichain, the elements AS with a fixed cardinal cannot be compared.

Hence an endomorphism ¢, of this module is of the form

O = @ As - idp, g (3.8)

|S|=k

with Ag € k. The goal is to show that for 1 < k < r we have ¢, = A¢ -td. In other words,
for all S, S’ subsets of C', A\¢ = Ag». We proceed by downward induction on k starting
with £ = r. In that case, we already have ¢, = Acidp,, as there is only one projective

indecomposable summand in degree r. If r = 1, we are done. Otherwise take 1 < k < r

and assume ¢ = Ao -id. We now put together equations (|1.6)), (3.7) and (3.8)). On the
one hand we have

Okt1 0 Gri1 = Ao - Ok

Evaluating at e g € Prg C ®|Sl=k+1 P\g.

Or+1 0 Pri1(ens) = Ac - Z(—l)‘s‘s “EA(S\{s])- (3.9)

SES

On the other hand we have

O 0 Orra(ens) = D (=D Ng 1 - encsrga-

seS
Because the e,(s\(s}) are linearly independent we get
As\(s) = Ac

for all S C C of cardinal k+1 and s € S. Noticing that any subset of C' of cardinal k < r

can be expressed as S \ {s} for some S and some s, this finishes the proof. O
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Going back to the diamond (Figure , the following example illustrates how the

result fails when the strong antichain condition is dropped

Example 3.4.5. The following morphism of complexes is not homotopic to any morphism

of the form described in the previous lemma

0 y Py y Py P, ®P,®P, y Py > 0

R

0 y Py y P} y P, ®P,, ® P., —— 0

~

where

3.5 Main result

Theorem 3.5.1. Let L be a finite lattice, let d and | be integers. Suppose there exists a
family of antichains (Cy)acr of L such that for all a € L, the following assumptions hold.

(i) The antichain C,, is below «.

(i) The module Mg is non zero and there is an isomorphism
s Mg, = Mg, [d] (3.11)

in D°(A).
(ii1) The antichain C, is strong.
Then D*(A) is ¢-Calabi- Yau.

In practice, assumption (2) is the hardest to investigate. The proof relies on the

following theorem.

Theorem 3.5.2. [51, Theorem 3.1] Let X be a finite poset with a unique minimal or
unique maximal element. If there are integers d and | such that S'(P) ~ P[d] for all
projective indecomposable modules of X, then the category D"(Ax(X)) is 4-fractionally
Calabi-Yau.

We also use this classical two-out-of three lemma |61, Lemma 3.4.10].
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Lemma 3.5.3. Let T be a triangulated category with self equivalence T' and let

Ay > As > As > T Ay

l l l l (3.12)

B1 > BQ > B3 TB1

~

be a morphism between distinguished triangles. If two of the vertical morphisms are iso-

morphisms, then the third one is an isomorphism as well.

Notation 3.5.4. To simplify notation we now set F = S'[—d]. We will often refer to
equation (3.11)) as the Calabi-Yau property for a certain complex of A-modules.

Proof of|3.5.1. By Theorem [3.5.2], it suffices to prove that the Serre functor satisfies the
Calabi-Yau property on the projective indecomposable modules. We proceed by induction
on the elements « of the lattice L. For the initial step notice that, by the first assumption

of the claim, the indecomposable projective module associated to the minimum of the

poset P;[0] ~ Mg@ 0] satisfies equation (3.11). Hence fix an element o > 0 and assume
as the induction hypothesis, that equation (3.11)) is true for all o/ < a. We will refer to
this as the outer induction hypothesis (OIH). Write C' = C,, for the antichain indexed by

a and let R = P& be its associated projective resolution. If r = |C| = 0, then R is a

projective module concentrated in degree 0 and there is nothing to prove by the second

assumption in [3.5.1]
Stepl. So assume r > 0 and consider the distinguished triangle

PaJ0] —— R —— 0, R —1— P[] (3.13)

induced by the truncation short exact sequence [54, Tag 0118]. A computation shows
that the map f is the boundary map 9; in degree 1 and zero in all other degrees. With
TR2 this triangle can be shifted to

R —— 051R —— P,[1] —— R|[1]. (3.14)

Because F' is triangulated, it sends this triangle to a triangle and we have the following
diagram.
R— 051R ——— P,[1] ———— R[]]
|
\|/

F(R) —— F(ox1R) —— F(F[1]) — F(R)[1]

—

If we can show that there exists an isomorphism following the dashed arrow and that


https://stacks.math.columbia.edu/tag/0118

62 CHAPTER 3. ANTICHAIN MODULES

the left square can be chosen to commute, we can apply TR3 to complete the diagram
followed by Lemma to finish the proof.

Step 2. To construct an isomorphism

O'le :> F(O'ZlR)

we show by downward induction on ¢ that

UZiR l) F(021R>

for i € {1,...,r}. We refer to this as the inner induction hypothesis. Taking i = r,
the initial step follows from the outer induction hypothesis as 0>, R ~ Pn¢[r]. Now, fix
1 < i < r and assume the property is true for . To show that it is also true for ¢ — 1, like
in , consider the truncation triangle

UZZ'R al—m> Rz_l[l] E— UZi—lR{l] E— O'ZzR[l]

shifted using TR2. Again, we want to conclude by using TR3 and Lemma [3.5.3] so it
suffices to show that we can choose the vertical isomorphisms of the following square such
that it commutes.
O'ZZ'R il Ri_l [Z]
flz glz (3.15)
Fos:R) 22 p(ri-1[i)

By the inner induction hypothesis we can choose an isomorphism f for the left vertical
arrow and by the outer induction hypothesis we can choose an isomorphism g for the right

vertical arrow.

Step 3. The isomorphism g can be rectified to make the square commutative. We compare
the morphism 9;, with g=' o F'(9;[i]) o f. Recall the isomorphism u between the morphism
set in the homotopy and bounded derived category, provided that the source is a complex
of projectives. The isomorphism is functorial in the target and is defined by sending a

class of morphisms up to homotopy ¢ to the morphism

P C

c

in the derived category. This is the "fraction" {. In the homotopy category we want



3.5. MAIN RESULT 63

to compare the morphism ;, which is already a morphism of complexes, with u='(g! o
F(0;[i]) o f). By Lemma there exists 7" an endomorphism of € g_;_; Prs such that

(Tod)i] =u (g~ o F(Bli]) o f). (3.16)

Applying u again we get

From now on all the morphisms will be in the derived category but we omit the denomi-
nator of maps coming from the homotopy category as it is always equal to one.

We prove that the map 7" is an isomorphism. It has form @4 g - idp,, because the
antichain C'is strong. It is enough to show that the projections of T" onto the indecom-

posable summands of its target are non zero. Consider Figure [3.5]

R LGN Pys]i] Shifted module maps
y [ Ps.idm
osiR by BET RV —= s Pgli dim Hom(R'[i], FPxs[i]) = 1
IIHlf OIH\LQ OIthwﬁ
Fos,R O, pri-ig X0y pp

Figure 3.5: Maps at play and their projections on indecomposable summands

The pentagon on the left is commutative since
goTlilodili] =gog o F(5i]) o f = F(dli]) o f.

The top right square illustrates equation so it commutes as well. For the bottom
right square, the outer induction hypothesis gives the isomorphism h. Next, F'is fully
faithful so it induces an injective linear map on hom spaces. Hence F'(7gl[i]) is non zero.
Finally, ¢ is an isomorphism so the composition F'(m,g[i]) o ¢ is non zero too. Because

the antichain is strong,
dim Hom (R, Pyg) = 1

and because Pngli] and F'Pg[i] are isomorphic, we also have

dim Hom ps (R™'[i], F Prg[i]) = 1.
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Hence it is possible to replace the map h by h = X\ - h for some A making it commute.

Chasing around the diagram we thus compute
Ag - homgli] 0 di] = F(ms o 8i]) o f.

By construction the projections of d; are all non zero and h and f are isomorphisms.
Again, F is an equivalence of categories so the right hand side is non zero. Hence Ag # 0
for all S C C' of cardinal 7 and T is an automorphism. Rearranging equation (3.16)) we
get

i) =T Yog o F(di])o f.

So replacing g by g o T' the square (3.15) becomes commutative. Applying Lemma m

and the inner induction hypothesis we have
F(UZlR) = UZlR-

Step 4. To complete the outer induction choose such an isomorphism ¢, and an iso-
morphism f : R — F(R). Just like in step 3 above, we want to compare the map
p: R — o> R with ¢7' o F(p) o f and, if needed, rectify the isomorphisms g and f to
make the square commute. Lemma implies that g=' o F'(p) o f = A - p. Because g
and f are isomorphisms and F' induces a linear bijection between hom spaces, A is non

zero and we can replace g by A - ¢g. This concludes the proof. n



Chapter 4

A family of Fractionally Calabi-Yau

Posets

The goal of this chapter is to prove Theorem [C] We use the combinatorial family of an-
tichain modules introduced in [60] and show that it satisfies the conditions of Theorem
[3.5.1] For the convenience of the reader and because it will be used heavily in the rest of
the article, in Section we recall the combinatorial framework of [60] with small mod-
ifications. In Section we also reproduce some proofs of |60], changing the statements

when needed to obtain results in the derived category.

4.1 Grids and their order ideals

Let m and n be positive integers and G, , be the product of two total orders of size m
and n respectively. Recall from Example the lattice J,,, of order ideals of G, .
We saw that .J,, ,, is isomorphic as a lattice to non decreasing sequences of length m with
values in [0, n] ordered by term wise integer comparison. These sequences are sometimes

called partitions and written

(A )

with ), u; = m, where p; encodes the multiplicity of the value A; and \; # A; if @ # j.
These partitions can classically be counted as follows: choosing a partition amounts to
putting m balls corresponding to coefficients (ay,...,a,) into n + 1 boxes, the possible

values of the coefficients. Which also amounts to placing n sticks in m + n possible slots.

m+n
m

This means there are exactly ( ) partitions.

65
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Bijections We now present other descriptions of this poset. The first two play a crucial
role in the proof of Theorem [C] while the visualisations will be more helpful in the next
section when describing hom spaces between certain objects. The first bijection that we
introduce sends these non decreasing sequences of length m to increasing sequences of
length m. Let

Z={-m,...,—1,0,1,...,n}

be a set of representatives of Z/(m +n + 1)Z. A configuration C of Z is a subset of size
m of Z. We write it C' = {¢; < -+ < ¢,,} as an increasing sequence naively using the
order relation on Z. We write C,,,, the set of configurations of length m on Z. Choosing

a configuration amounts to picking m distinct elements from a set of cardinal m +n + 1

m+n-—+1
- .

Given a partition o we can construct a configuration containing «’s coefficients in its non

so the cardinality of C, ,, is

negative side and encoding the multiplicities of « in its negative side. We write

7
xz‘:E 2%
k=1

to record the index of the last occurence of the it" coefficient. It will be called the ending
index of the coefficient \;. We set g = 0 as a convention. The index x;_1 + 1 is the
first occurence of \; and will be called the starting index. Think of the negative side as
the indices of the elements of the sequence o but with a minus sign. Out of the many
available options to encode the multiplicities, here are two that turn out to fit the problem

perfectly:

« keep all negative elements except the opposite of the starting index of each coefficient.
The resulting configuration is called the left configuration associated to «, and we denote

by it L,. The map sending a to L, is denoted by ¢;

« keep all negative elements except the opposite of the ending index of each coefficient.
The resulting configuration is called the right configuration associated to «, and we

denote it by R,. The map sending « to R, is denoted ¢,..

Example 4.1.1. Take n = 7, m = 5 and consider the partition a = (0,2,3,7,7). We
have r = 4 and

1 =1,29=2,23 =3 and x4, = 5.
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The associated left and right configurations are respectively
{-5<0<2<3<T7tand {-4<0<2<3<T}

Proposition 4.1.2 (|60, Proposition 3.3|). The maps ¢; and ¢, are injective.

Proof. Partitions are entirely determined by their coefficients and multiplicities. These
can be recovered from the positive elements of a configuration and its negative gaps, i.e.

missing values, respectively. O]

They are not surjective as ¢;(«) cannot contain —1 and ¢,(«) cannot contain —m.

Visualisation One can also think of partitions as paths in an m x n grid

as depicted in the figure for the partition (0,2,3,7,7). For a non decreasing

sequence (aq, ..., a,) the path is obtained by putting a dot at height a; in

the " column from the left and then take the minimal path going through

this dots. If a; = 0 put no dot. To visualise configurations consider a table

with m+n+1 columns and put a dot, or a bead in the columns corresponding
to the elements of the configuration at hand. We call this the abacus associated to the

configuration.

Example 4.1.3. The abacus associated with the right configuration of the partition a
from Example [£.1.1]is as follows

5 4 3 2 -1/01 23456 7

Note that we used the map ¢, for this configuration.

Each bead of the negative side adds one to the multiplicity of one of the coefficients. If
we are using the map ¢, to obtain the configuration, the bead sitting in the —k column, is
associated to the k' bead to its right. Indeed, gaps in the negative side indicate changes
of coefficients. If the columns —1 to —k + 1 are empty then exactly (k — 1) coefficients
end before the k™ element of the sequence and the claim holds. Any extra bead between
—1 and —k + 1 removes one such gap. If there are s such beads in the negative side, the
coefficient we are looking for corresponds to the (k — s) bead in the positive side. Note

that s is at most k — 1, so the procedure always yields a bead in the positive side.

Example 4.1.4. Figure [4.1] illustrates this idea on the abacus of Example [£.1.3] Its only
negative bead can be connected to the coefficient Ay = 7. It is the only coefficient with

multiplicity 2 in the partition a.
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5 4 -3 -2 -1/0 1 2 3 4567

W

Figure 4.1: Ilustrating the partial inverse of ¢,

Similarly, if the map ¢; was used, negative beads can be associated to their positive
counterparts by skipping £ — 1 beads to the left. These two procedures provide a way to
recover a partition from an abacus by associating the correct multiplicity to each value

indicated in the positive side.

4.1.1 A Family of antichain modules

To apply the machinery presented in Chapter [3] we identify a well behaved family of
antichains. Luckily, the poset of partitions is remarkably well suited for the matter: to
create an antichains below a certain element « it suffices to identify transformations on «
whose respective support cannot be compared. The family we discuss was discovered by
Yildirim and used to prove that the Coxeter transformation of the lattice .J,, , is periodic.
The rest of the thesis will focus on these antichains and their associated modules. We
introduce some extra combinatorial data before discussing the antichains themselves, their

associated modules and projective resolutions.

Enhancements We consider several antichains below x for each z € J,,,. These

antichains can be encoded as decorations or enhancements of x.

Definition 4.1.5. A right enhanced partition is a sequence

SR

nur+1 )

where multiplicities pq, ..., o1 sum to m. Note that we allow p,.; = 0. In that case,
we say the partition is plain. If p,.11 # 0 we say the partition is strictly enhanced. We
denote by Eﬁ,n the set of right enhanced partitions. Similarly a left enhanced partition is

a sequence
(OMO XA Lo AErY,
Example 4.1.6. The right enhanced partition 3 = (0,1,3% 4,5|5?) can be represented

as the path in Figure (4.2) where the enhancement is recorded with a short line. Here we

put the enhanced values in red for emphasis.
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The set of left enhanced partitions will !

be written Ef . As before, a left partition

with po = 0 is called plain, otherwise it is

strictly enhanced. Like for plain partitions,

we count

(m +n+ 1)
m Figure 4.2: Enhanced partitions in grids
right enhanced partitions as well as left en-

hanced ones. The map ¢, naturally extends to right enhanced partitions without any
change, making it a bijection. By "without any change" we mean that, as for plain
partitions, we remove the values —x; to —z, in the negative side and do not remove
—Z,41 = —m. Similarly, the map ¢; extends to left enhanced partitions, not removing

—1 from the negative side when o > 0.

Example 4.1.7. Consider enhanced versions of the partition a from example [£.1.0]
The right configuration associated to the right enhanced partitions (0,2,3,7|7) and
(0,2,3|7,7) are

{-5<0<2<3<T7}and {-H<-4<0<2<3}

respectively. The left configuration associated to the left enhanced partition (0]2,3,7,7)
is
{-b<-1<2<3<T7}

These configurations are represented in an abacus, in the order they were mentioned as

follows:

- 4 -3 -2 1|10 1 2 3 4 5 6 7

Corresponding antichains Our antichains are obtained by modifying the coefficients
and leaving multiplicities unchanged. For a right enhanced partition a = (A", ..., Air|nHr+1)
define the mutable coefficients to be S, = {e, ..., r} the indices corresponding to nonzero
coefficients. The number e is either 1 or 2. Please remark that this excludes the coefficients

beyond the enhancement bar.
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Definition 4.1.8. Let av = (A{*,..., M |n#+1) be a right enhanced partition. For any
subset J of S, define a new partition g;(a) = (A", ..., (A, |n#r+1) by

B N—1 ifie ],
Ai otherwise.
Counsider now the set
Co ={q(a)]i € S,}. (4.1)

Because ¢;(a) and g¢j(«) differ from « at different

indices, their associated plain partitions form an an- l |

tichain and we denote P, the perfect complex asso-

ciated to it.

We have opted to define ¢;(«) as enhanced parti-

tions as these transformations will also parametrise

extensions between the objects P,. This is the topic - 1 ;

. D . i 4.3: trati

of the next section. However the antichains associ- Bure HSHEAtion Of dK
ated with this construction are made up of elements of the poset, which are plain parti-

tions.

Example 4.1.9. Consider the right enhanced partition 8 = (0, 1, 3%, 4, 5/5%) from example
4.1.60 Then we have Ss = {2,3,4,5}. Picking the subset K = {3,5} of Ss yields

qr(B) = (0,1,2?,4%|5%). See Figure (4.3).
Proposition 4.1.10. The antichain C,, is a boolean antichain below a.

Proof. First we check that the antichain is strong. We take I,J C S, such that |I| =
|J| > 0and I # J. We also take i € I\ J and j € J\ I. Then it holds that

and symmetrically at the index x;. Hence ¢;(a) and ¢;(«) cannot be compared and the
antichain is strong. Now we check that the antichain is intersective. Recall that the join
of two partitions is the termwise maximum. We take I,J C S, to be non empty. We

write
v =q(a)Vaga).

For each i € S,, and every k €]z;_1,2;] we have 7, = \; — 1 if k € INJ and 1 = N

otherwise. Hence v = q;ny(a). O
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Associated Intervals

Proposition 4.1.11 (|60, Proposition 2.13|). Let « be a right enhanced partition. Then

P, is a projective resolution of the interval [f(«), ] where the function f is defined by
Fo O A ety s (0P N2 Nty (4.2)

It is more convenient to define the image of a right enhanced partition by the function
f to be a left enhanced partition. However, the interval [f(«),a] is an interval of J,, ,,

1.e an interval with bounds the corresponding plain partitions.

Proof. An element [ of the lattice is in the support of the antichain module associated
to P, if and only if § < « and for all 7+ € S,,, we have 8 £ ¢;(«). Because the partition
¢i(«) differs from « only between the indices x; 1+ 1 and x;, there exists k € [x; 1+ 1, z]
such that by = a;, = \;. The sequence [ is increasing so this is equivalent to b,, = \; for
all i € S,. The partition f(«) satisfies these conditions. For any other § satisfying them,
for k € [z;-1 + 1, 2], we have f(a)r = \i—1 = by,_, < by, hence 5 € [f(a), al. O

This proof uses the fact that the support of the antichain module associated to P, is
the set

{8 <alViesS,, B =N} (4.3)
This highlights the role of the indices x; for i €
S,. These indices will serve as comparison points e
between our partitions in many proofs to follow. ®
®

Example 4.1.12. Consider the partition

B =(0,1,3%4,55%) —
Figure 4.4: partitions 5 and f(5)

from example m Then f(B) = (|0,12%,3',4,53)
with the corresponding path dotted in figure (4.4). Please note how the value of 8 and
f(5) match at the ending indices 1,3,4 and 5 and how the values of f(/5) are minimal

given those constraints.

4.2 Yildirim’s theorem

The following key result is a categorified version of |60, Propoposition 4.2].
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Proposition 4.2.1. Let a be a right enhanced partition. Then
S™HL(P,) & Py lmn].

First we describe the action of the Serre functor on the object P,. Recall that it sends

the projective indecomposable P, to the injective indecomposable 1.

Definition 4.2.2. We call Z, the image of the projective resolution P, under the Serre
functor. Because P, is a complex of projective modules, we get Z, by tensoring the

components of P, by DA which gives us

o,
To: 0= Iy () 2 P lw—= = P L@ == Ia—0. (4.4)
JCSa, JCSa,
|J|=r—1 |J|=r—k

Just like for P,, we can show that Z, is an injective resolution. Its homology is

concentrated in degree |S,|. To describe this module, define the map
g (0% AT A s (NSO NG At pr T (4.5)

which is a counterpart to the map f, and set the following enhancement on the partition

gs, (@)
(0%1|( Ay — 1), ... (A, — 1)@ no+1) if \y =0

(4.6)
(J(Ar = 1)1 oo (A — 1) nort) otherwise.

We denote 0 the map sending « to this enhancement of g, («). Then the support of the

homology of Z,, in degree |S,| is the interval

[6(a), g o d(a)]. (4.7)

The map delta amounts to representing the corresponding configuration in an abacus
using ¢,, shift all its beads one step to the left and interpret the configuration using ¢;.
If we denote by T_; the shifting of the beads by one to the left, we can write this as
§=¢; ' oT_10¢, Themaps f and g are further related by the following lemma.

Lemma 4.2.3. The functions f and g are inverse of one another.

Proof. To see that it suffices to compute both compositions
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gof r (AT NS o) s (09T AR, L A0y At

y Nr—1s "'

(AT NG, L A et

and, almost dually we have:

fog: (0%, ..., A%) = (AT ST, L Aar—tparTh)

e (00T A L AT NS,

y Mr—1 9 MM
]

The key for Yildirim’s theorem is the following proposition which mirrors the combi-

natorics of Proposition 4.2 in [60] but with slightly different combinatorial objects.

Proposition 4.2.4. On the abacus, the map f is a shift to the left of the negative beads
or, to put it simply f(a) = ¢;' o ¢.(a). Conversely g is the reinterpretation of the
configuration using ¢, instead of ¢ i.e. g(a) = ¢ o Py(v).

Proof. Both « and f(a) have the same plain coefficients Ai,..., A\, of a hence their re-
spective abaci have the same positive beads regardless of the map used. To see that they

coincide in the negative side notice that
oY +1=af
for i € S,. The result on g follows from Lemma [£.2.3] O

More importantly we can now show that Yildirim’s family of intervals is stable under

the Serre functor. Write f = g o §. Then we have
Proposition 4.2.5. Let o be a left enhanced partition. Then S(Py) 2= P [[Sal]-

Proof. Recall that S(P,) is isomorphic to the interval [gs, (@), g(gs, («))] shifted by [S.]|.

But because f and g are inverse of one another this is the interval

[f(f(a)), f(a)

which itself is isomorphic to P, by Equation @ This gives us the result. O
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Hence describing the action of the Serre functor on the Yildirim modules amounts to

describing the action of f on abaci. This turns out to be quite simple

Lemma 4.2.6. The map f acts on right abaci associated to right enhanced partitions as
a shift to the left

Justification. This is clear form the description in terms of abaci of ¢ in Proposition 4.2.4
and of § below equation (4.7)). O

Example 4.2.7. Recall the partition 8 = (0, 1,32, 4,5|5?) from Example . We com-
puted f(3) = (|0,12,3,4,5%) in Example Now, following equations and
respectively, we compute 8(3) = (0[0,22,3,4,52) and f(8) = g0 d(8) = (02,2,32,4,5/5).
The right configuration associated to this partition is {—8, —4,—1,0,2,3,4,5} while the
one associated to § is {—8,—7,—-3,0,1,3,4,5}. The following abacus represents 8 and

f(B) and illustrates Lemma [4.2.6|
8 7 6 -5 4 -3 2 -1/0 1 2 3 4 5

Proof of [4.2.1. The previous Lemma implies that frtm+ s the identity on configurations
hence on partitions meaning that S™*"*1(P,) is isomorphic to P, with a certain shift.
To compute that shift, recall that applying the Serre functor to P, shifts the resolution
by |Sa| to the left so the total shift is:

m—+n-+1

Z |S~i(a)|‘

=1

But |S,| is the number of non zero beads in the positive side of the right abacus associated
to o’. When applying f to a a total of n +m + 1 times, each bead will be in the positive

side exactly n times. Because there are m beads, this means the shift is nm. O

Proof of Theorem[( Let us check that the family
{P.|a enhanced (m,n)-partition}

satisfies the three conditions of Theorem [3.5.1] First, no matter the enhancement of a par-
tition «, the projective cover of the interval [f(«), o] is the indecomposable projective P,.
Theorem gives the second condition. The third condition follows from Proposition
M.1.10, and this concludes the proof. O



Chapter 5

Tilting to higher Auslander algebras of

type A

The goal of this chapter is to prove Theorem [E] We start by describing morphisms and

extensions between the P, antichain modules introduced in the previous chapter. After

discussing relations between the morphisms, we construct a tilting complex between J,, ,,

and A"~Y. In doing so we make explicit an isomorphism between the higher Auslander

algebra of type A4 and the quadratic dual of A5, +2

5.1 Describing Homspaces

We define the category Y, to be the full subcat-
egory of D°(J,,,,) whose objects are the complexes
P, and all their shifts. The goal of this section
is to describe the morphisms of this category and
to identify irreducible morphisms. These include
morphisms of modules whose homology is concen-
trated in degree zero as well as morphisms between
shifted objects which are in fact extensions. Given
a morphism in Y, ,, we will first factor it through
an extension of the same degree but which we can
easily describe using our antichains. This factorisa-
tion yields a degree zero map. We then decompose
further these two components. Starting the process

of our factorization with the extension yields a form

75

/‘%\.

L]

Figure 5.1: Graph of the Y,
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of asymmetry between morphisms and extensions. It is an artefact of this proof which
will be smoothed out in the next section.

As a visual help and source of examples, see Figure [5.1] for the graph of },,. The
labels on the arrows indicate the degree in which the morphisms are concentrated. Note
that relations do not appear on the figure: many compositions of arrows are in fact zero.
Let o = (MY, ..., M |p#rtt) and 8 = (17, ..., 1™

will consistently use the following convention for the ending indices of the coefficients of

a and
wizz,uk and Y; szk

k<i k<j

n™s+1) be partitions. In this section we

to distinguish data from the two partitions as well as the indices that we might be looking
at any given moment. Recall from Theorem [3.3.4] that there exists at most one integer p
such that

dim Hom(P,, Ps[p]) # 0.

If it exists then dim Hom(P,,Ps[p]) = 1. This is the case if and only if there exists a
unique subset J of S, such that g;(«) € [f(5),]. In that case, p = |J|. When p = 0, we

can give different characterisations of this property.

Proposition 5.1.1. The following are equivalent.
(i) There exists a nonzero morphism ¢ : Py, — Pjg.
(i) The inequalities f(a) < f(B) < a < B hold.

(ii1) The partition « is in [f(B), 5] and for all non empty J C S, we have
qs() € [F(B), ).

(tv) The partition o is in [f(5), 8] and {\i]i € So} C {l;]j € Sp}.

(v) For all j € Sp there exists i € So U {r + 1} such that \; =1, ;-1 < y; < z; < yj11
and {\;]i € So} C {l;]5 € Ss}-

Proof. @ & is the characterisation of morphisms between intervals recalled in equa-

tion (|L.5)).
()] < follows from Theorem [3.3.4]
< |(v)| Reformulate using the ideas of the proof of Proposition {.1.11 which

we reproduce here. Recall that the interval [f(f), ] is the set of partitions {y|y <



5.1. DESCRIBING HOMSPACES 7

pand for all j € Sz,v £ ¢;(B)}. Because the partition ¢;(3) differs from S between
indices y;_1 + 1 and y;, this is equivalent to the existence of k € [y;_1 + 1,y;] such that
l; =1 < a, = by, = l;. Equivalently, there exists i € S, such that a = A\, ={; = b;. The
equality a, = by is equivalent to saying there is an overlap of the occurrences of the value

[; = A\ in § and «. This translates into the interlacing z;_; < y; < z; < y;41.

To complete the proof we argue that = = |(i1)|

= Assume that for all ¢ € S,, we have ¢;(a) & [f(8),5]. Thus there exists
j € Sp such that (¢;()),, < l;. Because o and ¢;(a) differ only for indices between

z;—1+ 1 and z; we conclude that A\; = I;. The inclusion {\;|i € So} C {l;|j € Ss} follows.

= |(ii)| Remember that in f(f), the value I; runs from y; to y;+1 — 1. Hence, the
interlacing condition implies that (f(5))., = A and f(5) € [f(«), a] because for alli € S,

we have ¢;(a) £ f(B).

O

To describe some degree zero morphisms, we introduce new transformations on J,, .

Definition 5.1.2. Let o = (Af", ..., Mr|ntr+t)

be an enhanced partition. Let ¢ be in S,,. —

If pu; > 1 define the partition p;(a) =

(A", .. A p™r+1) with multiplicities

—

i —1 if j =14, Figure 5.2: py, po and p3 on a = (0,24, 4%|5)
my= Q1 ifj=i+1,

1 otherwise.

There is a special case when i = 1, u; = 1 and A\; = 0: we still define the partition p;
pr(a) = pr(0Y, N62 o Ny = (NGRS Bt

The resulting partition has one coefficient less than a which reduces by one the index
of the coefficients which remain in the partition. This will lead to technicalities in some

proofs. Finally, when A\, < n and p,4; > 0, we denote p,(«), the partition

(AT X, s
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which has one more mutable coefficient than «. In these three cases we say that p; is well
defined.

Where ¢; changed the values of the partition, p; acts on its multiplicities. Using the

previous proposition and this new definition we list some notable degree zero morphisms.

Corollary 5.1.3. Consider a right enhanced partition «. There exists a non zero mor-
phism P, — Ps whenever f = pi(«) and i € {1,...,r} U{x} such that p; is well defined.

Proof. We first consider the case where i # x and u; > 1. Notice that if p; is well defined,
then the ending indices of a and p;() are the same except from z¢ = ¥ @) 1 1. Hence,
knowing that p; > 1 we have Ogay = A = pi(a)x?(a) for all j € S,. It follows that
a € [f(pi(a)), pi(a)] using the characterisation from equation (4.3). We also know from
Proposition that f(p;(«)) and p;(a) have the same values at indices xfi(a) from
which we can deduce that f(p;(«)) € [f(«), ] using the characterisation equation
again. We conclude with item from Proposition m The other two cases can be
treated very similarly and are left to the reader. See Figure [5.3] for a visualisation of the

intervals. O

Notation 5.1.4. For a pair («, 3) as in Lemma [5.1.1] consider the composition of canon-

ical maps

P % Py — [£(8). 6.

By Item of Lemma |5.1.1} for j € S, we have g;(a) & [f(5),5]. Hence the map above
sends generators of N& to zero and this factors uniquely through P, = P, /N, = [f(«), a]

providing us with one instance of non zero morphism which we denote “u;. Because the

hom space is one dimensional, any other non zero morphism is proportional to ‘u.

We will later see that degree zero morphisms occur from P, to Pg if and only if there
exists a sequence I = (iy,...,4) of i € {1,...,r}U{x} satisfying 5 = p;, o---op;, () such
that the intermediate transformations are well defined. In that case we write 5 = pr(«).
Moreover, the u; will be shown to correspond to irreducible morphisms. Because of the
combinatorial nature of the argument we will deal with this later and focus first on the
extensions. The following definition characterizes the subsets J of S, that will play a role

in describing extensions.

Definition 5.1.5. A subset J of S, is allowed when for all i € J such that i —1 € S, \ J,
we have \;_; < \; — 1.

Example 5.1.6. Consider the partition a = (0,12, 3,42, 5|5) with S, = {2,3,4,5} and
tr+1 = 1. Then the subset J = {2,3,4} and {2} are allowed while {4} and {5} are not.



5.1. DESCRIBING HOMSPACES 79

F---r--=2 ] -2
;l 1
1" — 1
1 1
T ===} _t !
1 1 !
— ! 1 :
1 1
—* e !
0, « 0, «
Up U,
S
- —
= —
bl —» .
i 1 1
i 1 1
i 1 1
1 ! 1
1 ! |
) ! i
Eoood oo ! - --r--==
[ [N
[ 1
[ [
—_— - e, e fenn
[} [}
1 1
[ [
zczz-zz! zczz-zz!
0, « 0, «
Uy UT‘+1
Legend: — § - fB)  —a - f@)

Figure 5.3: Ilustration of the interpolation condition for certain degree zero morphisms.

The following lemma records some useful facts about allowed subsets and the combi-

natorics of the p; transformations. The notation J — 1 refers to the set {j — 1|j € J}.

Lemma 5.1.7. Let J be a subset of S, let h,j be elements of S, and let i,k be in
{1,...,r} U{x}. The following assertions hold.

(i) If J is allowed, partitions o and q;(c) have the same multiplicities for matching

non zero values.

(i1) If J is allowed and 2 ¢ J or Ny > 1, then for all J C I C S, we have qr(a) =
anJ(qs(a)).

(i1i) Keeping I and J as in Item but taking Ao = 1 and 2 € J then q;(a) =
a\n-1(as(@)).

(w) If J is allowed, let I C S, and I' C Sg,) \ J be two sets of cardinal k and k — |J|
respectively. If2 & J or Ay > 1 assume I' # I\ J. Otherwise assume I' # (I\J)—1.

Then the partitions qr(«) and q;(qs(a))cannot be compared.
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(v) If p; is well defined and i # 1 or py > 1 then q;(pi(a)) > qs(@) and for any
J' C Sp,(a) different from J but of same cardinal, we have qy(p;(a)) # qs(cv).

(vi) If i =1, py =1 and A\y = 0 then q;_1(pi(e)) > qs(c) and for any J' C Sg different
from J — 1 but of same cardinal, we have g5 (p;i(c)) # qs(c).

(vii) If both h and j are allowed for o we have gnq; () = q;qn(e).
(viit) If both p; and py are well defined for a we have p;pr(a) = prpi(a).

(iz) If j is allowed for o, and j # 2 or Ay > 1, and i is well defined for o and i # 1 or
w1 > 1, then pigi(o) = q;pi().

Proof. (i) From Definition the partition ¢;(«) can be written as

Lo N X N )

Y T

where the coefficient A} appears p; times. In general we do not know if the A}
coefficients are all distinct. Because J is allowed, for all ;7 € J we either have
j—leJand X = X\; —1> XN, | =Xy —1,0r, j —1¢ J in which case, if
J#F LN, =X —-1>N,_, =X\ Fori g J, then we have \j = \; > iy > A\,
regardless of whether i — 1 € S, or not. Hence all the non zero values X, appear
exactly p; times just like their counterpart in . When Ay = 1 and 2 € J, then 0
appears [ + po times in g;(«)

(ii) Let i be in S, and k € [z;—1 + 1,2;]. Then

Ni—1 ifiel\JorieJie ificl
(qr\s(qs()))r =
Ai otherwise

which corresponds exactly to ¢r(«).

(iii) When Ay = 1 and 2 € J, the first non zero coefficient has values A3 or A3 —1 > 0. It
is the second coefficient in ¢;(«). More generally, when J is allowed, the coefficient
present between indices x; 1+ 1 and z; is A; or A\; — 1 but is the (i — 1)th coeflicient in

qs(). Hence, the subset I’ of Sy, (o) which satisfies g1 (gs(a)) = qr(a) is (1\ J) — 1.

(v) The transformation p; is well defined and ¢ # 1 or y; > 1, so a and p;(«) have the
same coefficients Ai, ..., \.. Hence ¢;(«) and q;(p;(cv)) have the same coefficients

N, ..., AL. They differ only at the index x; where ¢;(pi())z, = Ny y > X, = qy(@),.

(3
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Hence qs(pi(«)) > qs(a). Now take J' C S, () of same cardinal as J but different
from it and let j be in J'\ J. The partitions ¢ (p;(a)) has value A; — 1 between
the indices 2, + 1 and z;, where the values z)_, + 1 and z’; varie depending on
whether ¢ = 5 — 1, ¢ = 7 or neither. It is easy to check that in all three cases we
have o | +1 < z; < 2. At the same time partition ¢;(a) has value A; at index

;. Hence gy (pi(a)) 2 qs(a).
The proofs of the remaining items are left for the reader hoping the ones we gave
provide enough intuition on how the combinatorics of partitions will be discussed in the
rest of the thesis. ]

Proposition 5.1.8. There is a nonzero morphism from Py to Py (|i] in the derived

category if and only if J is allowed and |J| = 1.

Proof. Clearly it is true that ¢;(«) € [f(qs(c)),qs(a)]. By Theorem there is an
extension in degree |J| if and only if there is no other subset J' such that ¢y (a) €
[f(gs()), qs(a)]. So we want to show that this is equivalent to J being allowed. Assume

J is allowed and take J' # J. Because the antichain is boolean it suffices to consider
J' D J. Let j bein J'\ J. Then

(g7 ())z; = Aj — 1 < Aj = (qs(@))s,

where x; is the end of the coefficient A\; in . Because J is allowed z; is also the end
of the coefficient \; in ¢;(a). By condition of Proposition the inequality above
implies that ¢ () € [f(qs(a)), ¢s(«)]. Reciprocally, assume that J is not allowed. Then
there exists j € S, such that j € J, j—1¢& Jand A\;_; = A\; —1. One can then check that
qugj-13(a) € [f(qs(@)), qs(cr)] using the characterisation for the support of the P, and
conclude with Proposition Figure provides an illustration for the arguments of
the proof. O

Notation 5.1.9. There exists a canonical realisation of these extensions defined as mor-
phisms of complexes between the projective resolution associated to o and the interval
module associated to ¢;(a) concentrated in degree |.J|. We take the morphisms of modules
in degree |J| to be the canonical projection of the factor P,y onto [f(gs()), ¢s(a)] and
write the resulting morphism of complexes 5. Among the extensions we just exhibited

we are particularly interested in the ones where J = {i} C S, and write these 'u.

Up to homotopy there exists a unique lift of these morphisms along the projective

resolution Py, [|/]]-
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IR 7=
== S
=113y |7 =1{1,2} |
a3 () € [f(agsy), agsy] g2y (@) € [f(agy), agy)
Legend: — « Aty — qs(@) - flgs(a))

Figure 5.4: Ilustration of the proof of Fact [5.1.8

Lemma 5.1.10. Let « be a right enhanced partition and let J be an allowed subset of
Se of size j. The lift ¢ of uG : Po — Pyl J]] has support @ ;c; Py (a) in each degree.

More precisely, in degree j + k, we have

¢j+k = @ <_1>|I\J|J+‘J|.k ' iqu[(a)

Jci
[|=j+k

where |11y =3, il

Proof. The morphism of complexes ¢ = (¢;); is concentrated in degrees greater than the
cardinal |J| = j of J. In each degree, because the antichains are strong, the morphism
of module ¢;;; decomposes as linear combinations of the identity morphisms of the in-
decomposable projective summands appearing in both the source and the target. These
are precisely the summands F,, () satisfying J C I. See Lemma for more details.
It remains to determine the coefficients £(I) associated to each such summand. Assume
we have computed the coefficient for degrees between j and j + k. We want to compute
e(IU{i}) where i is an element of S, and [ is of cardinal k. First we assume that Ay > 1

or that 2 ¢ J. The relevant morphisms fit in the following commutative square.

(_l)mlu{z‘}

P’llu{i}(a) > Par(o)
e(Iu{i})l l&([) (5.1)
(—1)" oty
PfH\Ju{i}(fIJ(a)) I PqI\J(fIJ(a))

Note that the bottom boundary map has a (—1)7 sign because the complex is shifted by
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j. For the square to commute it must be that
(=17t x g(Tu {i}) = (=1)lhuer x (1.
Recall from equation that
lilr ={h € Ilh < i} = |i[ng + il

Hence we get a recursive formula for the coefficient e(I U {i}) = (—1)7*lilv x ¢(I). By
setting the degree j sign to be 1, we necessarily get the following formula for the degree
J + k maps
bjn = @ (=) lHI 1k idp, .,
1 |J:CJ{H§

where we introduce the notation |I|; = >, |i|;. The resulting coefficient is the product
of the contribution of the previous signs which results in the two sums in the exponent.
It is independent of the choice of i made before. It is then clear that this indeed yields a
morphism of complexes. Just like in Lemma , when Ay = 1 and 2 € J replace I\ J
by I\ J — 1 to have the corresponding subset of Sy, (). The index 2 is the minimum of
J and of I. We can then check that we have

lilr = {h € Ilh < i} = Jilnga + lils

which yields the same recursive formula and thus the same coefficients for the lift. In
both cases there is no non trivial homotopy for the pair of complexes, so the explicit form
we provided is in fact the only one and we shall refer to it several times in what follows.
To conclude this proof we underline the fact that (/) is indeed not zero for all subset [
of S, containing J.

]

Similarly, it is possible to determine precisely the lift of the degree zero morphisms

along the projective resolutions. We will do this at the end of this section.

Lemma 5.1.11. Let « = (M\{*,... M |nf+t) and B = (17", ..., [ |n™+1) be two par-
titions and let J be a subset of S,. The subset J is the unique subset of S, such that
qs() € [f(B), ] if and only if

(a) there exists a morphism in degree zero from Py, () to Pg,

(b) the set J is allowed,
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(c) ife € J and \. = 1 then the partition  should have its first value zero and y; > Te_q.

Proof. Assume J is the unique subset of S, satisfying ¢;(a) € [f(B), 5]. First we will
prove that J is allowed by contraposition. Assume there exists j € J such that j—1 & J.
If such an element j does not exist then J is automatically allowed. From these two

assumptions it follows that q;g;—13(a) € [f(8), 8] and g3 () € [f(B), 3]. Hence
« there exists k such that [, = A\; — 1 and x;_; <y < @53

» there exists k" such that [y = \;_; and x;_5 < yp < z;_1.
In particular, k # k' and A\;_; # A; — 1. This proves that J is allowed. Next we show
that there is a degree zero morphism. Note that the statement above about k is true for

any element j of J and the one about k&’ for any 7' & J. It follows that

{Xili € Sqy} S {15 € Ss}-

By Proposition [5.1.1|Item ((iv), there is a non zero morphism from Py, ) to Pg. Lastly we
check Condition . We want to argue that if e € J, A\c = 1 and 3, _, > 0 then gy (o)
is also in [f(f), f] as it satisfies all the conditions that define the interval. This would
be a contradiction to J being the unique subset of S, such that ¢, («) € [f(5),5]. To
see this, first notice that because there exists a nonzero morphism from P, ) to Pg, by

Proposition 5.1.1] Ttem , the first non zero value of (3, is also the first non zero value

of ¢;(c). Moreover, in (3, it runs beyond the index z. i.e. the first non zero value in .

Hence, we would still have g (q(a) < 5. Moreover, g (a) and ¢;(«) have the same
values after the index z. and the defining conditions of the interval [f(53), 3] are checked
at indices y; which all appear after x.. Hence the first non zero value of 3 starts before
Teq + 1.

Conversely, assume that J is allowed, satisfies Condition and that there is a mor-
phism from P, ) — Ps. Consider a subset J' of S, and suppose that ¢, () € [f(5), B].
We will show that J’ = J. By Proposition for all non empty J” C S, (a), the element
qs(qs(a)) is not in [f (), B]. Because the element

qr (@) A gs(a) = quur (@) = gmalgs(@))

is in the interval [f(3), 5] as well, we conclude that J'\ J = @ and J' C J . To see that
in fact J = J', say there exists j € J\ J'. Take j to be minimal and assume first that
j # 2 or that Ay > 1. Because J is allowed, the partitions ¢;(«) and ¢, («) have the
same non zero coefficients and the same multiplicities for non zero coefficients up until

the index z;_;. Moreover, the j coefficient of ¢s(a), A\; — 1, runs from z;_; +1 to z; and
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no further. The j coefficient of ¢/ (a), A;, runs from x;_; + 1 to z;. This follows from
J being allowed, but we point out that it could extend further as the subset J’ needs not
be allowed. This is why taking 7 minimal helps avoid these problems as much as possible.
By Proposition there exists k € Sg such that z;_; <y, <z; and [, = \; — 1. If we
assume that ¢y (a) € [f(8), 5] then we would also have I, = A\; which is impossible hence
J' =J.

If A, =1 and 2 € J, then our assumption on the zero value in [ implies that 2 is

necessarily in J’. Hence the previous argument concludes the proof. n

Proposition 5.1.12. Let ¢ : P, — Pgli] be a non zero morphism in Y, . Then there
exists a unique subset J of S such that ¢ factors through Py, [i] and |J| =i completing

the following commutative diagram.

¢
> Pell /1]

AN

,P(IJ(CV)H‘]H

Proof. By Theorem [3.3.4] there exists a non zero morphism ¢ if and only if there exists
a unique subset J such that ¢;(a) € [f(B), 5]. Moreover any two maps between P, and
Pgli] differ by multiplication by a scalar. By Lemma [5.1.11| the following morphisms exist

and are unique up to multiplication by a scalar
Po = Pgy@ /1] = Ps[lJ]]-

It remains to check that their composition is non zero in the homotopy category. We

represent the morphisms in the following diagram.

Pa : B @ PqI(a) E— @ PqJ(a) > .. > Pa
1=17] =11
’// II// l 0 // ) , 7 l
I 1 !
Puldl: T —— Py ———0
\\N ¥ v \\,( l \_{// J/
Ps 0 —— [f(8),8] ——— 0

The composition of the two module morphisms in degree |J| is non zero because the sup-

port of the top map is P, ) and ¢;(c) € [f(8), 8]. No homotopy map can be constructed
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because by assumption if I # J, qr(«) € [f(5), 5]. By Theorem the resulting non
zero morphism in the homotopy category is proportional to ¢ and the result follows. [J

Next we decompose further the extensions P, — Py, ()[|/|] and the degree zero mor-

phisms.

Lemma 5.1.13. Let a be a partition and J be an allowed subset of S,,. Then the extension
UG : Po = Pyy(a)|k] discussed in Proposition decomposes as

IUjk [kfl]\

1u]- 1uj 1
1 NP

Pa — Pq{jl}(a Pq.i(a) [k]7

where J = {j1,...ji} is totally ordered by j; < jii1.

Proof. First notice that the truncated sets J; = {ji,...,7;} are all allowed. We proceed
by induction on k. Assume the result holds for £ — 1. Then by Theorem it suffices

to show that the composition
Po = Py, (k= 1] = Pyy(a) K]

is non zero. Again we can draw a diagram to visualise the situation:

, @ Pqi(q‘,kil(a))/,q Py @) ——

\ \ ’iGSqu_l(&) /// 0
\\J v N2 \\\} l K// N2
Pkl 0 ——— [f(as(@)), qs()] ——— 0

It is clear that ¢;(«) £ qs(«) when |I| = k — 1. It might not be clear however that the
composition of the two module maps in degree k is non zero. Because the bottom map has
support Py ) we need to argue that the restriction of the top map to P, is non zero
either. This is the case by Lemma [5.1.10} Finally, we need to point out that this results
in the canonical map u; and not just a map proportional to it meaning that no negative
sign appears when composing the two maps. We compute the sign of the module map
in degree j with Lemma [5.1.10} It has support the indecomposable projective module

Py(a)- Its sign is
(_1)|jk|(lk71+1'(k_1) _ (_1)2'(’?*1) =1
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Hence no sign appears. ]
A similar result holds for degree zero morphisms.

Lemma 5.1.14. Let ¢ : P, — Pp be a non zero morphism of modules. Then there exists
a sequence (dy, ..., d.,dy) such that for all 0 < i <r, we have 0 < d; < p;, with d; = p;
only ifi =1 and A\; =0, and if A\, = n, we have d, =0, otherwise d, € {0,1} so that

B=pl o ophoph(a).

Moreover, the morphism factors through each of the objects associated to the intermediate

partitions.

Proof. By Theorem and Item of Proposition the inclusion
{Aili € Sa} € {17 € S}

holds. In other words, for all i € S,, there exists j € Sg such that \; = [;. Moreover
their ending indices satisfy z;,-1 < y; < 2; < y;41. Fori € S, we set d; = x; —y;. If
Iy = 0, because a < 8 we also have \; = 0 and y; < x1 so set dy = x1 — y;. Lastly, we
set dy = 1if N\, <n, p,o1 > 0 and mgy; = 0. Otherwise, d, = 0. The condition d; < p;
holds because x;_; < y; when 7 # 1. The resulting partition has the same coefficients as

(. The multiplicities also match when ¢ < r:
T —di — i —dion =2 — X Y — Tiog + Tim — Yo = My

To see that the map factors through the intermediate partitions use Item of Propo-
sition [5.1.1f let k be in S,, 0 < d < dj, and set v = pf opi’ff o--o0p¥opd(a) and

assume the morphism P, — P, can be decomposed through all the intermediate links. By

construction, a € [f(pr(7)), VIN[f(7), ¥IN[f (), a] so the map induced by the composition

Ou’y
Po — Pv — Ppk(v)

is non zero on this vertex hence the composition itself is non zero. Recall that by Theorem
the hom spaces are one dimensional. It follows that the map ¢ can be factored into

0
e}
a sequence of uj maps. ]

Morphisms in the category J,,, can thus be decomposed into a composition of exten-

sions luj" and morphisms Ouz". Most of them cannot be decomposed further.
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z
_________ | Legend: — B --- f(B) a

— | do=0,dy =1,dy=0,d, = 1

Ay = Bo,_,

Figure 5.5: Hlustration of the proof of Lemma [5.1.14

Lemma 5.1.15. Let « be a partition, h € S, allowed and k € {1,...,r} U{x} such that
pr is well defined. Assume that h # € or that Ay > 1. Then the morphisms ‘uy, and ®uy,

are 1rreducible.

Proof. The situation is summed up in the following diagrams.

Ouk

P, \ - > Pan(ay 1] Pa > Prr(a)
Pgsld]

Ps

Consider a morphism in degree zero of the form °u; and assume it factors through an

object Pg as f o g. Letters \; and z; refer to the partition o, X, and x to px(c) and I;
and y; to . Then, by Proposition Item [(v)] it holds that

{>\2|Z S Spk(a)} - {ZJ|J € Sﬁ} - {)‘l|2 € SOé}

and for all j € Sp there exists ¢ € S, such that z;_1 <y; < 2; < y;41 and [; = A;. The
index i € S, associated to the value \; in a corresponds to an index i’ € S, () associated
to the same value X, = \;. If k=1, A\; =0 and py = 1, then ¢/ =i — 1, otherwise, i = 7.
Note that it is possible that i = r + 1 when k& = . In that case, i’ can equally correspond
to an enhanced or unenhanced coefficient. In turn, for such an i’ there exists j' such that
yjr—1 < oy <y <y and N, = 1y

It follows that j = 5/, and that z}, <y; < z;. Hence, when i # k we have z, = y; = ;.
Otherwise, when ¢ = k # «, y; can be either x; or 2}, = x; — 1 which means that 5 = o or
B = pr(a) and uy, is irreducible. When k = %, It is easier to use Item of Proposition
. We then conclude that «, py(a) and § have the same underlying plain partition
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and that f(a) < f(8) < f(pr(a)). The plain partitions f(«) and f(pg(«)) differ only at
index m. Knowing already that  has the same underlying plain partition as the other
two we deduce that f(5) = f(a) or f(5) = f(pr()). This determines the enhancement
of B so that 8 = «a or f = pi(a).

Next consider an irreducible extension 'u; with o and § as before. The object Pj
is shifted by either 0 or 1. We consider first the case where it is shifted by 0. On the
one hand, o and [ satisfy Item of Proposition . On the other hand by Theorem
and Proposition there exists f such that ¢f(8) and ¢;(«) satisfy Item of
Proposition . Write I} the coefficients of g;(3). Combining these observations, we get
that for all < € S, there exists j such that \; = {; and ;-1 < y; < x; < y;41. For such a
j there exists ¢’ such that I; = X, and y; 1 < 2y <y; < zpy1. Whether i = h or not, we
get that i = 7', y; = x; and 8 = . The case where Py is shifted by one is very similar:
B and g, () satisfy Item |(v)| of Proposition and by Proposition there exists a
unique f € 5, allowed such that ¢;(«) and S satisfy Item of Proposition . Write
A/ the coefficients of ¢f(«). Combining these observations, we get that for all i € S, there
exists j such that A/ = [; and 2;_; < y; < x; < yj+1. For such a j there exists ¢’ such that
l; =N, and y;—1 < zy <y; < xyp1. Whether ¢ = h or not, we get that i =4/, y; = =,
and = qp(«). O

0

Notes 5.1.16. If \, = 1, then 'uy decomposes into 'u; o Ou’fl_l o Yug where gy is the

multiplicity of the value zero in the source partition. We give a concrete example below.

Poo1ry —— Pooooy[1]

N7

Pain[l]

We invite the reader to look at Figure[5.1|again as each commutative triangle illustrates
one of Proposition [5.1.12] Lemma [5.1.13] or Lemma [5.1.14. The figure also corroborate
[5.1.15] and Notes [5.1.16] Before we move on to describe relations between morphisms, we

give an explicit lift of the canonical morphism %u;.

Lemma 5.1.17. Let ¢ : P, — Ps be a non zero morphism. Then its lift along the

projective resolutions is made of monomorphism in each degree and all signs are positive.

Proof. According to Lemma [5.1.14) we can write 5 as pj(a) where I = (iy,...,1) is
sequence of elements of {1,...,r} U {x}. Let J be a subset of S, of size k. If 1 does

not appear in I or p; > 1 then J can also be seen as a subset of Sz. Applying Item
of Lemma repeatedly, the subset J is then the only subset of Sg satisfying
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gs(a) < qs(0). 1 € Jand py =1, we apply Item and of Lemma to get

that J — 1 is the only subset of size k of Sg for which ¢;(a) < ¢s_1(8). Hence, when 1
does not appear in I or u; > 1 we have

q.(8)

Or = DJcs, Crlg ) (a)

otherwise it is

q.(B)

Or = Bacs.crits

where c¢; € k. It remains to see that c; = 1 makes all the squares commute similarly
to the proof of Lemma [5.1.10l This time the boundary maps are identical in the top
complex and the bottom complex hence no signs appear. Hence we have an explicit lift

of the canonical degree zero map which is a monomorphism in each degree. O]

5.2 Configurations and relations

We can now describe the irreducible morphisms of Section[5.1] using configurations through
the map ¢, from Section 4.1} To do so we define a partial function on configurations, as in
[31] for the construction of Higher Auslander algebras of type A. If R is a configuration,
k€ Rand k—1¢ R, we write

o, (R) = (RU{k = 1})\ {k}. (5.2)

Note that if £k = —m, o, (R) = (RU {n}) \ {—m} as k represents an element of
Z]/(m+n+1)Z. From now on, we will also write the objects of the category YV, as Pk,

implicitly identifying o with R.

Example 5.2.1. Recall the right abacus associated to the partition (0,2,3,7,7|) from
Example 4.1.3

-5-4-3-2-1\01234567

Applying 0~ to the configuration associated to a consists of taking the bead placed in

—4 and sliding it down to the —5. We then get the following abacus,

5 4 3 -2 101234567

which is associated to the partition (0,2,3,7|7).
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Proposition 5.2.2. In terms of configurations, the irreducible morphisms, in degree zero

are arrows

Next the irreducible morphisms in degree 1 correspond to the following transformation
on configurations

Note that, for a partition o with Ay = 1, the extension 'u$ does not appear in the
statement as the transformation ¢, of the partition does not correspond to a well defined
transformation o; of the corresponding configuration. This is coherent with Note [5.1.16]

Proof. First we prove the statement about the degree zero irreducible morphisms. Let «
be a partition. Recall from Corollary and Lemma that these morphisms were
of the form

Po — Ppi (@)

with i € {1,...,r} U{x} and p; > 1 when i # 1. First, taking ¢ # * and using|5.1.3} we
compute
, r—1 iftj=1
2 = ! (5.3)
xj otherwise.

This implies that R, (o) = (Ra U{—2;}) \ {—2i + 1} = 0, ,1(Ra). Now take i = %, with
A < n and p,4159. The degree zero morphisms corresponding to the transformation p,
moves the enhancement bar all the way to the right. On the configuration this amounts

to removing the coefficient —m and adding n. Finally the degree 1 morphisms were
Po = Pyy(e[1]

where \; — 1 > \;_;. Here the configuration associated ¢;(«) is clearly the configuration
associated to o where the \; was replaced by \; — 1.

Reciprocally, every k € R such that k —1 ¢ R, o, (R) is well defined and corresponds
to either an irreducible morphism or an irreducible extension through the inverse of ¢,
(recall Figure [.1). If k < 0, then o, (R) corresponds to the transformation p;(a) if k — 1
is the " gap in the negative side counting from the right. It is associated to %u;. If & > 0,
then o, (R) corresponds to the transformation g;(«) if k is the j™ positive element of
the configuration, in increasing order hence it is associated to 'u;. This concludes the

proof. n
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Note that configurations make the description of the irreducible morphisms more ho-
mogeneous. This will also be the case for the relations between them. To simplify nota-
tion, the morphism (in degree zero or one) from Pg to P, (ry Will be denoted ufl since
the degree of the morphism is encoded in the sign of k. We will now express the relations

between the morphisms and extensions in the language of configurations.

Lemma 5.2.3. Let R be a configuration, take k,l € R such that k — 1,1 —1 ¢ R. We

have the following equalities in the category YVm n:

IIE uf’:(R) oup = suZ;(R) oul and 2 - UZEER) our =0 (5.4)
where ¢ = —1 if k and | are positive and 1 otherwise.

Proof. We distinguish several cases depending on the sign of the integers k and [. First
consider pﬁl when both £ and [ are positive i.e. the irreducible morphisms are concen-
trated in degree 1. Then the morphisms in question can be summed up in the following
diagram. We use partitions because the order relation is not clear on configurations. The

elements k£ and [ of R can be uniquely associated to i,j € S,

Pa . e, ————— @ Pq{i’,j’}(a) — @ Pqi,(a) E— Pa — 0
7/ . . .
// i',j'€Sa i'€Sq
/ \
! \
! \
h NS NS
Np ey P P ) (5.5)
Y Taila) - a5/ (ai(a)) | qi(@)
\ 7'ESq /2
\ /
\ /
\ l ,
\ /
A e
YN NE g NE

Poine s 0 —— [flaus()), qu(@)] —— 0

The resulting morphism of modules in degree two is the morphism from P, to Py, ()
described in up to a sign because ¢ and j are assumed to be allowed. This is
symmetric in ¢ and j hence the result. To be more specific, according to Lemma [5.1.10]
signs appears in the upper middle square. The boundary map component going from

P to P,

a1 (@) 4 (q: (o)) D128 sign (—1)l7l651 . Hence the two compositions differ by a factor —1.

Next we consider z* when k£ > 2: the morphisms in question can be summed up by

the following diagram using partitions.
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. k=2 k-1 k i wi+1 x+2
o C ) iz )\)\i ;Prl ii+2 D!
o C b i i+1 i+1 i+2 Dp_l
* Ai Aip Ait2 i
Figure 5.6: relations between irreducible degree zero morphisms
P, : L — @ Pq{i’,j}(a) E— @ Pqi/(a) — Py, — 0
// i',j€Sq i'E€Sq
7:77 v 1. ¥ p | PV 0 (5.6)
"Puwll]: T ——— @ gi(gie) T+ Lgi(e) ——
\\\ jeSqi(Q) /I’ 2
\\M + 4 l J<”/ 4

0 —— [f(a(q:(a))); ¢:(gi(a))] —— 0

There cannot be a morphism of modules in degree 2 because the gy j;(«) cannot be
compared with ¢;(¢;) when j # 3.

We now take k and [ non positive. For the pﬁl, notice that both branches are non zero
when [ # k — 1 and conclude by saying that hom spaces are one dimensional.

To see that z; is a relation recall from that there exists a morphism between P,
and Ppg if and only if a and 8 have the same coefficients up to bars and zeros and ay,; = 3,
for all 7 in S3. Let a be a partition, such that its corresponding right configuration R
contains k but neither £ — 1 nor k — 2. Say the negative coefficient k is associated to
the " value of the partition. Figure illustrates the action of o, and o,_; on R
when & > —m — 1. On the right side, we see that the coefficients at y; .1 = x; + 2 are
different in « and S meaning no arrow exists between the first and last partition. When
k = —m — 1 the argument can be summed up with a similar table which we leave to the
reader. Finally, when k£ = —m, z; is indeed a relation because there is no extension from
a to the partition g, 1(p«(«)). The partitions o and p,(«) have the same underlying plain
partitions but not the same associated antichains and ¢, (p«(a)) does not appear in the

antichain of «.

Next we assume k is positive and [ is non positive. We can check that both sides of the
square yield the same result by looking at diagrams like and and discussing the

support of the morphisms in degree 1.
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7304 : e @Pqi/(a) ” Pa
/// i/ €Sq ///
#0 / supported J/ //
/ on P (a) , l //
! 1 z
1 ~ | 7’ <N
ll ~ 1 // N
/
\\ 'Pqi(a)[l] . \—> qu(a > 0
| l
\
\
iﬂ hd ~ ) / g

0 ——1[f (pg(qz( ))spigi(a))] —— 0

Figure 5.7: pg; when [ <0 < k (1)
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P, : D P P Py 0
// sup;;;)rted L7 €80 e
#0 /, on i (@) // l ///
/ /
/ 70
,I Vv II ,// Vv
I v o
) T T D Putwsen = Poy@) — 0
‘\ \ 7 GSQ /
\
\\ \\ ///
\ N e
A v ~ \\} )4 ~

Po;(astanl] :

0 —— [f(pj(a:(a))), pj(gi(a))] ——— 0

Figure 5.8: p; when [ <0 < k (2)
[l

Example 5.2.4. We give one instance of z; making a composition of morphisms equal to
zero. Take for instance oo = (0,0,2,2,2,5,6,6,6,6|). It is associated to the configuration
C={-9,-8 —7,—4,-3,—1,0,2,5,6}.

We compute 0, (C) = {—9,-8,—7,—5,—3,—1,0,2,5,6} which is associated to the parti-
tion 8 = (0,0,2,2,5,5,6,6,6,6|) It is easy to check that there is a morphism between their
corresponding modules using Proposition Item Similarly there is a morphism
~,(C) ={~9,-8,-7,-6,-3,-1,0,2,5,6}. Its
(0,0,2,2,5,6,6,6,6,6[). Then one can check that a,y # c,;

meaning there is no morphism from P, to P, and 2%, is a relation. This illustrates the

from the module associated to 5 to o5 (o

corresponding partition is v =

general argument.

Remark 5.2.5. The fact that some squares commute and other square anticommute is
inconvenient for Theorem [E] However, in Corollary we will see that these signs

can be corrected.
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Definition 5.2.6. A subset J of a configuration R is allowed if for all j € J either
j—1¢ Rorj—1¢€J. Then o (R) is well defined. Note that if J is in the positive side

of R, J corresponds to an allowed subset of S,.

Lemma 5.2.7. Let Ry, ..., R; be configurations such that for all ¢ € {0,...,t — 1}, there
exists kg € Ry such that Ryy1 = oy, (Ry). Then the morphism f = ukRp”_’l1 0-:0 ukROO is non

zero only if for all q, k, € Ry.

Proof. Assume that there exists ¢ such that k, ¢ R,. Then there exists r < ¢ with
k., = k,+ 1. Take ¢ to be minimal and r as close as possible to ¢. Take s € {r,...,q}.
Then, by the assumptions on ¢ and r, we either have ks > k, + 1 or ks < k;. Whenever s
is such that ks < kg < kg + 1 < ks, equation provides the equality

Uk O uks = euks O U

s+1 s+1°

Hence using equation (5.4)) we can rewrite the morphism f as

fr=eX (0 Uky O Uiy, 4 O O Uk ) O Uk © v O Uy, O Uk, O ... )
where s is a permutation on the set {r +1,...,¢ — 1} and if ¢ > 7, k) > kg + 1 and
ks@iy < kq otherwise. Finally, we use equation ((5.4]) again to get

f=e€ex (---ouks(q_l) O +++ O U, O Uk, OUp, OUp, O OUp, o...)

The two central terms correspond to zj, which is zero by Lemma [5.2.3] This concludes
the proof. m

We will show that the converse of this Lemma [(5.2.7is true. To do so we need to find a
canonical way of decomposing morphisms into irreducible ones. Knowing that irreducible
morphisms are indexed by certain elements of the partition R, we want to equip R with
a convenient order relation. Recall that when we defined configurations on Z we wrote
them as increasing sequences using the order relation on Z. This ordering is not adapted
to the study of the morphisms: for any partition R containing —m but not n, it is in

general unclear whether the morphism u”,  should come before or after ul! when k is

positive. Let R and R’ be configurations. Suppose that R = oy, o -+ 0 oy, (R), that for
cach ¢ < t, k, € R and the partition R, = oy, o --- 0 0y, (a) is well defined. We have the
following composition of irreducible morphisms

Ry R
f=u, oo
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in V,n. Order the combinatorial data K = (ky,...,k,) and by the same process the
elements of Z as follows: let k,,;, be the maximal element of Z for the naive order which

does not appear in K and is less than or equal to 1. We consider the total order
Kmin <y Kpmin + 1 <p e <gn<g-—m<y--- <y Kpin — 1.

Because we picked the combinatorial data so that the consecutive morphisms are well
defined, if k,,;, # 1 then k,,;, is not an element of R. Alternatively, if k,,;, = 1, either
1 € R and the first value of the list K ordered with <;is k >y 2or 1 ¢ R and k >; 1.
Hence, if k is the minimum of K with regard to <y, then £ — 1 is not in R.

Lemma 5.2.8. Consider partitions R, R’ and a morphism [ as above with combinatorial
data ki,..., ki and order <. Suppose also that for all 1 < q < t, we have k; is in R.

Then there exists a permutation p € &; such that we have

kpay <g -+ <p kp

and

foree {1,—1}

Proof. Recall from equation ([5.4)) of Lemma that for each ¢, if k,, kg1 € R,—1 while
ky—1¢ R,y and kg4 — 1 € R, then

R Ry Oy (Rq) R,
q q—1 cu q+1 qouql

Ukgyr © Uk = Ely, kg1

with the transformation oy, ., being well defined on R, ;. We want to show that this
equation applies when k41 < k,. The fact that k,—1 € R,_; follows from the assumption
that oy, is well defined on R,_;. Because oy, is well defined on R, and k.1 < K, it
must also be that k1 —1 ¢ R,_;. Using the bubble sort algorithm , the chain can be
ordered up to a sign by applying relation py, ., x, when k; <; k,_;. Indeed the bubble sort
algorithm only swaps pairs of entries when they are not ordered according to the relation

<. Moreover the assumptions of the lemma are maintained at each swap. O

Example 5.2.9. We take R = {—8,-4,—-1,0,1,3,4,5} and K = (—4,—1,0,1). Then
kmin = —2. The canonical ordering for a chain of morphism defined by data K, is
(—1,0,1,—4).
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We can now tackle the converse of Lemma

Lemma 5.2.10. Let Ry, ..., R; be configurations such that for all ¢ € {0,... ,t—1}, there
exists ky € Ry such that Ryy1 = oy (Ry). Then the morphism f = ukRp”:ll o oul is non

zero if and only if for all q, k, € Ry.

Proof. Assume that k, € R = Ry for all 0 < ¢ <t — 1. By Lemma we can assume
the elements of the chain are ordered with the ordering <;. Let 7 be the maximal index
such that k. <; n. First we show that f.,; = ug, o---owuy, is an allowed and non
zero extension. Because k,,;, € R or k; > 1 (see remark before Lemma , the set
{k1,...,k;} is allowed as per Definition and see section . SO fest is non zero in
Ym.n by Proposition and Lemma [5.1.13]

We now consider the morphism fo = ug,_, - - 0wy, ,, which is concentrated in degree
zero. To see that it is non zero we argue that its source and its target satisfy the condition
of Proposition Item The source of the morphism is associated to configuration
RT = 0, o---00, (R) and its target to R = o, o---00, (R;). Denote by a
and o the partitions associated to R and R’. We chose the integer 7 such that the two
configurations are identical in columns k,,,;,, to n—1. It follows that, in terms of partitions
we have {\;|i € S,,} C {l;|j € Sar} completing the second part of Proposition Item
(v)

For the first part, let j be an element of S, its associated value [; being an element
of R and its ending index y; corresponding to a the absence of —y; in R’. Because R’ is
obtained from R, by moving beads of the abacus by one slot to the left, the gap in —y;
was obtained by filling some gap k& < —y; in R.. The gap k corresponds to an ending
index —xz; of the coefficient \; in the partition «,. Moreover, —y; must be strictly less
than the next gap to the right of £ in R, because it would require moving a bead from
—x;_1 to —x;_1 — 1 and that —x;,_; € R,.

We need to show that [; = A;. Because beads can be moved twice without contradicting
the assumption that the ks are in R there are the same number of gaps in R’ and R,
between column —z; and k.. Moreover, recall that the ¢ gap in the negative side
must correspond to the #** coefficient of the partition. There are three cases depending on
whether zero is a value of the source configuration or the second. If both partitions contain
the value zero, then all the gaps are in the negative side and —x; and —y; correspond
to the same bead. If both partitions do not contain zero as well. Lastly it is possible
that R, contains 0 but R’ does not. In that case, the i coefficient in « is the (i — 1)
coeflicient of o and we again have A; = [;. Hence there exists a non zero morphism from

Pr. to Pr. In turn this means that the map f; is non zero because of how composition
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of morphisms between intervals work.

The final step is to argue that f = f, o fe,+ is non zero in ), ,. We have showed that
there exists J C S, allowed such that there exists a non zero morphism from P, to
P.. Moreover, if 1 = A, € R and ¢ € J, then 0 is an element of R because the bead
associated to 1 can only be moved once. The same is true for all the beads associated to
zero if it was an element of R. Hence if € € J and A\, = 1, then the partition S should
have its first value be zero i.e. [y =0 and y; > z._; and we can apply Lemma to
conclude that there exists a morphism in the derived category from P, to P,. Moreover,
by Theorem the set J that we have identified is the unique subset of S, such that
q;(a) € [f(d/),a']. By the proof of Proposition the composition f = fo o feu is
non zero. This concludes the proof.

O

Remark 5.2.11. By Lemmas [5.1.11], [5.1.13] and [5.1.14] all morphisms decompose into an

extension followed by a degree zero morphism. In turn these can be further decomposed

into the irreducible morphisms we have identified. The list of the combinatorial data of
the morphisms we obtain is called the canonical list associated to a non zero morphism.
Its ordering coincides with <. Its positive (in the naive sense) elements are the elements
of the unique subset J of S, such that ¢;(a) € [f(5), 5].The interlacing of the ending
vertices described in Item of Proposition m gives the rest of the canonical list by

looking at the transformation associated to the integers in the intervals | — z;, —y;].
As a consequence we have the following proposition

Proposition 5.2.12. The relations described in equation generate the relations

between morphisms in the category Vi, n. Hence Vi, ts generated by quadratic relations.
Proof. Consider the k-linear category C' defined as follows:
« the objects of C' are pairs (R,1) where R is a configuration and [ is an integer;

« the morphisms are generated by arrows (R,l) — (o, (R),!') with ' =1+ 1if k>0

and " = [ otherwise,
« with relations pj; and z identified in Lemma [5.2.3]

By Lemma [5.2.3] again there is a well defined functor F' : C' = Y, ,,. This functor
is essentially surjective. To prove the current proposition we need to argue that it is
an equivalence of categories. By Proposition [5.1.12, Lemma and Lemma [5.1.13

combined with Proposition [5.2.2] the functor induces surjective maps between the hom
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spaces Home((R,1), (R, 1I')) and Hompe(;,, (Pr, Pr(l' —I]). It remains to see that this

map is injective. Consider an element

q
Zai - f; of Hom¢g (R, R') (5.7)
i=1

where ¢ is an integer, a, ..., a, are elements of the field k and the morphism f; is a non

zero composition of hf morphisms. In other words, there exists a sequence ki, ... 7]{;2-

such that f; = hk;‘ 0--+0 hk’i‘ Suppose F'(>°!_ a;- f;) = 0in Yy, . We can also assume
fi # 0 and a; # 0. The previous Lemma ensures that zero relations, i.e. when ¢ = 1
correspond exactly to those described in Lemma [5.2.3] To conclude when ¢ > 1 we want

to argue that sequences k¢, ..., k;i contain the same elements, independently of <.

By Lemmas|5.1.11], [5.1.13|and [5.1.14] there exists a canonical list K of transformations

to go from « to 5. We argue that it is the only possible list. Suppose L is a list of
transformations giving a non zero morphism f from « to 5. Order both K and L using
the order relation <,,;, with starting point k£,,;, the minimum of the starting points for K
and L. If there exists s an element of L which is not in K pick s minimal for <,;;,. Then
using the transformations listed by L, s — 1 € § but through K, s — 1 ¢€ 8 which is a
contradiction. Hence all the elements of L appear in K. Symmetrically, all the elements
of K appear in L.

Denote f* the composition of the maps associated to the canonical list in increasing
order of their combinatorial data. Note that Lemma and its proof apply to the
category C' as well since it only uses equation (5.4). Hence every morphism in C' from
(R,1) to (R',l') is proportional to f*. In particular, there exist elements a,b € k such
that fi —a- f*=01in C and %Zi22ai~fl b-f*=0inC. Because F(>_] ,a;- f;) =0
in Yy, a=—band >}  a;-fi=0in C. O

Notation 5.2.13. For a configuration R as well as an integer 0 <! € Rand 0 > k € R,

define
k(R, Z x and v(R, k) Z x.
TER k>z€R
1>3>0

We establish a number of identities concerning x and v combined with a transformation
o, . Let [, and [; be allowed in . Without loss of generality we can assume that [; < l,.
Then (0, (R),l2) = x(R,l2)—1 while k(0,, (R),l1) = (R, ;). Hence x is a combinatorial
transformation that detects the event [; < l,. Similarly, if k; and ky are allowed in R_
and ky < ky then v(o, (R), ko) = v(R, ko) — 1 while v(o, (R), k1) = v(R, k1). We also
have (o, (R),l) = k(R,l) and v(o, (R), k) = v(R, k). Alternatively we can define these
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quantities on partitions. We will only use the quantity x which we express as follows: let

a be a partition, let ¢ be allowed in S, and set

D= A (5.8)

Because it will be used several times, we write k, = kg = k(a, 7).

To conclude this section, we give three presentations of the category YV, ,, by generators
and relations. The first one is a direct corollary of Proposition with the relations
of Lemma . According to equation ({5.4]), with that presentations some square of
irreducible morphisms commute and some anticommute. Using Notations [5.2.13] we give
two more presentations, one where all the squares commute and one where they all anti-

commute.
Corollary 5.2.14. The morphisms in Yy, are generated by

(i) the maps ull for all R € C,,,, and for all k € R allowed, with relations generated
by pkl = ul ok (B) oukR—suZl ®) oul where k,l € R such that k —1,l —1 & R and
e = —1if k and | are positive and 1 otherwise, along with zf' = uZiR) o ull where
kEeR, butk—1,k—2¢&R;

(ii) the maps vE = (=1)*ER . uR for all R € C,,, and for all k € R allowed, with

)R k( ) ‘71 (R)

relations generated by (py )" = v, o vt — v, o vft where k,l € R such that

k—1,l—1¢ R along with (z,)? :kaiR)ovlf where k € R, but k — 1,k —2 ¢ R;

(ii) the morphisms wf = (R, k)(ull) for all R € C,,, with e(R, k) = (—1)"Bk+rr jf
k <0 and e(R,k) = 1 otherwise, for all k € R allowed, with relations generated by

(o) = w;f’“ (&) o wl + w;! (R )owl where k,l € R such that k — 1,1 —1 & R along

with (z])% = wk_iR) owl where k € R, but k — 1,k —2 &€ R.

Proof. The presentation with relations as per Item |(i) . )| follows directly from the previ-
ous discussion. The morphisms {vf};, and {wf}s, still form generating sets for the
morphisms differing from their uf® counterpart by a unit. Moreover, the zero relations
2i (2;)® and (2])f are also proportional for each R and k. We will now show that the
same is true for the square relations. Without loss of generality we can assume that k£ < [.
We first consider the relations from Item . We write the terms of the relation as follows

o (B) R _ (_1)N(R,k)+n(0';(R),l) k( )

Yy © Uy Ouk>

Ugf(R) ° ,UZR _ (_1)H(R,Z)+R(Uf(R),k) l C (B uz
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If k is negative, then
k(R k) + k(og (R), 1) = k(R,1) + k(o, (R), k).

Hence we have

o, (R o; (R K k(o
() = o+ P oot — ot oyt = (—1)FERH=E DD R

Otherwise, from the computation in Notation [5.2.13| we have k(R, k) = k(o, (R), k) and
k(R,l) = k(o (R),l) + 1 which implies
)R o, (R) R , (R)

/ . o, R
(ﬂk,z =1 OV — Uy SR

_ (_1)N(R,k)+n(U;(R),l) ) (ulU;Z(R) o ukR + uzf(R) o ulR)

(_1)n(R,k)+n(U;(R),l) . kal'

For the square relations of Item we distinguish three cases. When k£ > 0 and [ > 0
we have (0, (R), k) = e(R,1) = e(0; (R),l) = e(R, k) = 1 s0 (p.;)"* = pj;. Next, when
k < 0 < we still have e(R,l) = 1 = ¢(o, (R),l). However, by the computations in
Notation [5.2.13| we have,

v(o; (R),k)+k

e(o; (R), k) = (=1) T = ()RR = (R, k),

so it holds that

o, (R o, (R
P o+ o uf

—e(RE)-u* P oul 4 (o7 (R), k) - ull P ol
=e(R,k) - pi.

Finally, when k < [ < 0 we compute

v(o, (R),k)+ndl_

c(o7 (R),K) = (=) W = (1 = (R

and

V(Uk (R),l)—'rl—‘rfidl: (R) —

e(R, 1) = (~1)70Hnr = (1) —&(oy (R), 1)
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which yields, after similar computations
(p/k,,l)R = _8(R7 k)€<R7 l) ’ pﬁl

and this completes the proof. O]

5.3 Tilting object

In what follows, av denotes an element of .J,, ,,, ¢.e. a plain partition.

Proposition 5.3.1. The subcategory Thick({P.|la € Jimn}) is the category of perfect

complexes of Jp, ,, which is equivalent to its bounded derived category.

Proof. In the proof of the main result of Section [3| we constructed by induction each
projective module as the end of a sequence of cones starting in ),,,. The argument
only relied on the fact that each projective had a quotient belonging to the family (Pg)a.
Restricting the family to the modules associated with the plain partitions, i.e. those with
the bar pushed all the way to the right, proves the claim about Thick(7"). ]

Using Notation [5.2.13| we set
T:= P Palral. (5.9)

The goal of the rest of this section is to prove that the complex T is tilting, meaning it
has no self extension, and to compute the algebra End T°?. We can hope to do so because
we know the extensions only appear in one degree for each couple of summands of 7'
Shifting each summand of 7" by k, amounts to concentrate all the morphisms in degree
zero. Note that there are subgraphs of Figure for which such a thing is not possible.

Example 5.3.2. Take for instance, the cycle made of the objects P(a o)), P(1,1)) and P(g)2)
in Figure . Say we shift P9y by n. The extension from Py ) to P 1)) forces the
later to be shifted by n + 1. In the same way, P02y has to be shifted by n + 2. Lastly,
the morphism in degree zero from from P2y to P(z2)) means that the later should then
be shifted by n + 2 as well which is a contradiction. More generally cyclic path cannot be
shifted in a way to make the morphisms be in degree zero unless all the morphisms were
already concentrated in degree zero. Another subgraph that leads to contradicting shifts
is the one whose vertices are (111), (1|2), (12]) and (01]). The extensions along this path
would require Py to be shifted by two compared to P(yj3). But the morphism in degree



5.3. TILTING OBJECT 103

zero between the two requires them to be shifted by the same amount. Please note that
the composition of the morphisms along these paths is zero using the relations exhibited

in the previous subsection.
Lemma 5.3.3. The object T has no self extensions.

Proof. First note that the quantity «, only depends on the non zero values of the partition
a i.e. those indexed by S,. Hence if there is a morphism in degree zero P, — Ps then
ko = kg. This follows from Item of Lemma and the fact that we only look at
plain partitions.Moreover, if J is allowed and |J| = p then kg, ) = ko +p. We put these

two remarks together. If there exists a non zero morphism
Palkal = Pslrs][p] (5.10)

by Proposition [5.1.12] there exists a unique subset J of S, such that ¢;(«) € [f(5), O]
and |J| = —Kq + kg + p. Because J is allowed for o, kq = Ky, (a) — |J|. Because there is
a non zero morphism of modules from Py, ) to Ps, kg = Kq,(a). Thus, |J| = kg — Ka,

leading to p = 0 and T" has no self extensions. O]

Proposition together with Lemma [5.3.3| show that the objet T is tilting. We now
describe its algebra of endomorphisms and to do so we recall the construction of higher
Auslander algebras of type A following convention from |32, Definition 2.12]. Note that
we compose arrows using a different convention but everything else is written as close to
that source as possible. Let d and s be integers. The higher Auslander algebra of type A¢
is constructed as a bound quiver algebra. The underlying set )y of the quiver @) is the set
of increasing sequences of length d + 1 with values in {1,...,d+ s}. Let z = (2o, ..., 2q)
be an element of ()y. We use the symbol € to indicate that a value appears in x. For

k € x, we define a partial transformation o;" on Qg by
O']—:([L') = ($0< Lxp < k41 < Tigo < l’d>

whenever the resulting sequence is increasing i.e. ;4o 7# k + 1. Similarly we write o, for
the partial map that replaces £ by k£ — 1 in the sequence, whenever possible. Let the set
Q1 of arrows of the quiver consist of elements af with source z and target o; (z) whenever
the target is well defined. In the path algebra of the resulting quiver k(@) we consider the
ideal I = (G) generated by the vector space G with basis the following combinations of
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paths of length two

O'Jrit O'+.73 .
= ockl()af—al’“()ozi ifk,lexand k+1,1+1¢ x,
k7l_ O'+ x

akk“()of,gﬂ ifl=k+1leczandl+1¢uz.

Then set (kQ)/I)° to be the higher Auslander algebra A?. With these relations and the
usual grading by length of paths it is clear that A? is quadratic. Its quadratic dual is

A= (kQP /(G

where kQ% = k(Q°) and G* is the orthogonal complement of G in the dual of kQ,,
the vector space with basis the paths of length two in the quiver @ [45]. It remains to
compute the orthogonal of G in k@), to get a presentation of the quadratic dual as a

quiver with relations.

Proposition 5.3.4. The orthogonal component G+ of G has basis

z\o U+($) o
(o) p(akil )P

z\op a;’(x) op z\op U;r(x) op
(aip)P (g ) + (af )P (e )

where k,l € x while k+ 1,1+ 1 & x.

Proof. 1t is clear that these elements are in G+. We know that
dim G + dim G* = dim kQs.

We argue that the set above is precisely a basis for G+ for reasons of cardinality. To do
so, notice that the composition of two arrows in the quiver modifies either one or two
elements of the sequence. The case where it modifies one element corresponds to the first
relations in the equation above. When two elements are modified there are two cases.
Either the order matters or it does not. If it does then we are in the case of the zero
relations of A If it doesn’t, than the 2-path appears in the commutation relation of A¢
but also in the anti commutation relation we exhibited for (A¢)' just now. Hence there is
a partition of a basis of k@, into the paths in G and G*. O]

Note that in the quadratic dual, squares commute with a sign i.e. ab+ cd = 0.
What remains to prove for Theorem [E]is that the signs of the squares can be modulated

meaning that we can construct isomorphisms between the quiver algebra modulo relations
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Figure 5.9: illustrating the duality of the relations

with ab 4 ¢d = 0 and the one with ab — c¢d = 0 for some square relations in the ideal I.

This is not true in general but holds for certain configurations of squares in .J,,,, and A%.

Proof of Theorem [E]. The restrictions of the presentation of Y, , given in[5.2.14] Item
to the indecomposable components of the object T correspond exactly to the presentation
of A%jrll after replacing the configurations by their complements and shifting them by
+m. O

Proposition 5.3.5. The algebra Jy, ,, is derived equivalent to (A7)

Proof. The generators and relations of the algebra End(7")° given in|5.2.14|Item |(iii)| after

restricting to the tilting object are exactly the relations of the quadratic dual of Anm;f

described in Proposition [5.3.4] after shifting the values of the configurations by +m. [

As a direct corollary of the proof we have the following nice result which is probably

known but for which I have not found suitable reference in the literature.

Corollary 5.3.6. There is an isomorphism of algebras between A¢ and the quadratic dual
of Ajys-

5.4 Interlacement

We want to deduce a description of the quadratic dual of the higher Auslander algebras
using interlacing sequences and a sign rule in a way that mirrors a known description
for higher Auslander algebras of type A introduced in [47]. We also want a description
of Vi, using interlacement. Let x = (zo,...,2q) and y = (yo,...,ys) be two integer

sequences. Still following convention from [31] we say that x left interlaces y when
To<Yo<w1 <y <--<xq<Yq (5.11)
and write it © < y. Similarly, we say that x right interlaces y when

To <Y =01 <Y1 < <2 < Ya (5.12)
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and write it « < y. In |47], the authors use these notions to describe the higher Auslander
algebras as well as certain morphisms spaces in the following way. To paraphrase [31],
for each sequence = as above, consider the indecomposable A%~!-module M, with vector
space k for sequences y with which z left interlaces and zero everywhere else. Arrows

k — k act as the identity and the rest act as zero. Denote by M the module

& .. (5.13)

Theorem 5.4.1 (|47, Section 3|). The module M is a cluster tilting object for A% and
Ad 2 End(M).

Moreover, there is an explicit description of this endomorphism algebra which allows

us to say that A? is the incidence algebra of the left interlacement relation.

Theorem 5.4.2. For two sequences x,y we have

. L ifz<xy
dimy, Hom ya-1 (M., M,) = (5.14)

0 otherwise.

Here is a new formulation using a convenient category.

Definition 5.4.3. Let n and d be integers. Define the positive interlacing category

category Z7,, as follows:
« set Ob(Z;,,) = {increasing sequences of length d + 1 in [0,d + n]};

« given two increasing sequences a and b in Ob(Z],,), set Z7, (a,b) to be the vector

space with basis m, if a and b interlace and zero otherwise.

+ Given two composable morphisms m,; and my., we define the composition in the

following predictable manner

me. if a and c interlace,
Mpe©Myp = )
0 otherwise.

The morphism m, , is the unit for each object a and it is easy to check that the composition

law 1s associative.

Proposition 5.4.4. There is an equivalence of categories A% -Mod = Fun(I;fn, k-Mod)
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Proof. The object
@ Homg+ (x,7) (5.15)

is a progenerator for Fun(Z' . k-mod). O

m,n’

By Corollary , this immediately gives a description of the quadratic dual (AZ;S )
Corollary 5.4.5. There is an equivalence of categories (AZ;%)T -Mod = Fun(I;n, k-Mod)

We could also define a new category which describes more closely the combinatorics of
(AZ;S)T. For a sequence a of length d in [0, d+n] we denote by a® the increasing sequence

of length n consisting of the elements of [0, d + n] which do not appear in a.

Definition 5.4.6. Let n and d be integers. Define the signed interlacing category Z,, as

follows:
« set Ob(Z,,,) = {increasing sequences of length d + 1 in [0, d + n]};

« given two increasing sequences a and b in Ob(Z] ), set

k-m_, if a® and b° interlace,
7 L(a,b) = ’
0 otherwise.

To define composition to match the signs of the quadratic dual note that morphisms are
characterised by the set of indices at which complements of the source and the target
differ. Given two composable morphisms My, and my . associated to sets J, and J, ., we
define the composition in the following way

(=1)my,

—. if a® and c° interlace,

mb,c ° ma,b = .
0 otherwise.

and e is determined by an extra rule. Consider the following sets.

I'={ie[l,m]b # c:}
J={i e [1,m]|a; # b;}

Then we set € = (—1)!ls,

Claim 5.4.7. There is an equivalence of categories (A})T-Mod = Fun(Zy,,, k-Mod)



108 CHAPTER 5. TILTING TO HIGHER AUSLANDER ALGEBRAS OF TYPE A

The reason we introduced Z;,, as a category was to enable us to discuss signs when
composing arrows. Because we know Proposition to be true, we could prove this
statement indirectly. A direct proof would require more work. Instead of proving this, we
will state and prove in a direct way a statement about ), ,,. Heuristically, the statement
about Y, , should be less neat because, in that category, the sequences wrap around at
n + 1. The author thinks it gives an interesting expansion of Higher Auslander Algebras
but is unsure of how to make sens of it. We revisite the order relation we introduced
in [5.2l This time, we give a definition independent of any sequence of transformations

linking the two objects.

Definition 5.4.8 (order <% associated to a pair of configurations (R, S)). Let R , S be
two configurations. Take x to be the least value of SN [0,n] with regards to the naive
order. If no such value exists, then take z = n. Set k:l,S;z so be the first value of Z,, ,, which
is to the left of x and not in R. The order relation associated to (R,S), denoted <% is
thus

k< kp+1<3 - <hn<y—m<y- <pkr—1.

We can use the order relation above to characterise morphisms in ), , in terms of

interlacings.

Proposition 5.4.9. Let R and S be configurations and k = k% as above. Let a, respec-
tively b, be the sequences obtained by taking the complement of R, respectively S, in Z,, ,
and numbering the elements of the set using the order relation <%. Then there exists a

non zero morphism in Y, from Pr to Psli] for some integer i if and only if a < b.

The proof of the proposition builds upon arguments that were already used in the

previous section, so we only sketch it. The following notation is convenient for the sketch.

Notation 5.4.10. Let a = (A{*,..., M7 |n#+1) be a partition and let J be an allowed
subset of S, We cut the set J into disjoint mazimal blocks By, ..., By of consecutive

indices that point to consecutive values i.e. B; = {ji,...,j} } with

when 1 < k < N;. Blocks can be of size N; = 1, see Example [5.4.11]

Example 5.4.11. Consider the partition a« = (0,1,2,3,5,7,8,9) and the subset J =
{2,3,5,6,7}. We describe the blocs of J. The first one is B; = {2, 3} associated to values
1,2. The second one is By = {5} associated to value 5. The third one is By = {6,7}

associated to values 7, 8.
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0123456789

(e ® @ e © © @

By By B3

Figure 5.10: The configuration of Example |5.4.11

Sketch of proof of 5.4.9. First we assume that a < b. We set

d

J = |_| Jx;, min(y;, n)]. (5.16)

sign

This subset of S, is well defined as each interval ]x;, min(y;,n)] is made up of values
that appear in o because the sequences interlace and their elements are gaps in the
configurations of the corresponding partitions. It is allowed because for each interval z;
is a gap in .. Hence there is a non zero extension from « to ¢;(«). There is a degree zero
morphism from P, ) to Pg by Item of Proposition It remains to see that the
composition of the two is non zero by checking the last assumption of Proposition |5.1.11
like in the proof of [5.2.10]

Conversely, assume we have a non zero morphism from P, to Ps[i]. Then by Propo-
sition there exists a unique subset J of S, such that ¢ factors through P, )[|J]].

The sequence a left interlaces with the sequence ¢ associated to ¢;(«). See Sections 2, 4

k
T
O 00 B 000 By, OBy,
0

B [P & i o B o (P R Y

Section 1 Section 2 3 4 5 6

Figure 5.11: interlacing gaps in the positive side for a and ¢;(«)

and 6 of Figure[5.11] The rest of the values, starting at the index Ny + 1 of the sequences
a and ¢ match because a and ¢y(«) share the same multiplicities. Note that in Figure
5.11, we represented a situation where ¢ ¢ J. There are as many beads associated to
each block as elements in that block. When ¢ € J, it is the case for all the blocks except
maybe the first one. Figure [5.12] illustrates how to think of the first block in that case.
Notice how £ = min J. It is clear that a and b interlace in that situation as well. Next,
by Proposition [tem as well as Theorem the abaci of ¢;(a) and 5 match
in columns k to n — 1. Otherwise, there would also be a non trivial extension from ¢;(«)

to 8. This corresponds to the first M entries of the sequences ¢ and b. By Item of
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k01
Oie - e @B e
o e

Figure 5.12: The first block and its effect when ¢ € J

Proposition [5.1.1], we have the interlacing of the ending coefficients y; < x; < y;. There
exists k such that y; = ¢, and x; = a; by the argument made in the fourth paragraph of
the proof of Lemma [5.2.10] Hence c left interlaces with b.

This results in a left interlacing with b. Please note that (left) interlacement is not
in general transitive, however, in this specific case, the sequences a and ¢ are the same
starting from index Ny while ¢ and b match before index M. We only have to check that
"nothing bad happens" at the junction between these two sequences. The key is that
M > Ny. O

Having finished this characterisation it is possible to define an interlacing category like
Z;, or Zin with sign conventions matching any of the presentations of Corollary .

We conclude this section and this thesis by showing that the interlacing restricted to
the indecomposable summands of tilting object T', is compatible with the interlacement
describing the Higher Auslander Algebra. To do so, we need to find a minimum k which
is compatible with all the sequences encountered in 7' simultaneously. This is possible on

tilt
m,n’

posable summands of 7" and their shifts, but not on ), ,. The following arguments rely

which we use to denote the full subcategory of Y, , whose objects are the indecom-

on elementary manipulations of sequences.

Suppose a = (ay,...,a,+1) left interlaces with b = (by,...,b,41) according to the
order relation <% whose minimum is £%. Then the maximum for that order is k5, — 1. If
an <3 b, <% k% — 1 then the sequences a and b also left interlace for the order relation
with minimum k% — 1. Suppose we have the equality a,,; <% k% = b, and consider the
sequences a’ = (api1,0a1,...,a,) and b/ = (by11,b1,...,b,). Then o left interlaces with b’
for the order relation with minimum a,,. Reciprocally, if a’ left interlaces with &' for that
new order, then a left interlaces with b for the old one. At the same time, notice that
the sequences associated to elements of the full subcategory y;g“;l all contain the value
—m and that for two sequences that interlace, the value —m must be present at the same
index. Combining the two procedures above and this last remark we get that choosing
—m as the minimum of our total order and numbering the elements of the complements
of the configurations according to that order gives us sequences that interlace if and only

if there is a non zero morphism between the corresponding objects.



5.4. INTERLACEMENT 111

The bijection between the indecomposable summands of the tilting object and the
vertices of the quiver of the Higher Auslander algebra A;},;ll is given by (a1, a9, ..., apy1) —
(ag+m, ..., a,1+m) because a; = —m. The bijection with the vertices of the quadratic
dual of the Higher Auslander algebra (A", ') is given by numbering the elements of the
configurations from —m upward, knowing that —m never appears in the configurations

of V¥ “and then translating them by +m in the same way.

Example 5.4.12. The configuration of the partition (0,1,2,3,3,7,8,9) in Jgg is
{—4,0,1,2,3,7,8,9}.
The complement of this configuration, ordered from —8 is the sequence
(—8,-7,—6,—5,-3,—2,—1,4,5,6).
Its image in (A72Y) is (1,2,3,5,6,7,12,13,14). Its image in (A7) is

(4,8,9,10,11,15, 16, 18).
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Appendix A

Two more figures

Figure A.1: A relabeling of Figure using configurations

113
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(2,2,2)

(1,2,2)

NSNS

(0,0,2) 0,1,1)

(0,0,1)

f

(0,0,0)

Figure A.2: The Hasse diagram of Js4
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