
Exercise sheet 5

Adjunctions and equivalences

December 11, 2025

The following exercises will be discussed in class.

Exercise 1

Prove that a functor $F : \mathcal{C} \rightarrow \mathcal{D}$ establishes an equivalence of categories between locally small categories¹ \mathcal{C} and \mathcal{D} if and only if F is fully faithful and essentially surjective.

Hint: You can use, with or without proof, the following result.

Lemma 1. *Let $A \xrightarrow{\phi} A'$ and $B \xrightarrow{\psi} B'$ be isomorphisms in a category \mathcal{C} . Let $f : A \rightarrow B$ be a morphism in \mathcal{C} . Then there is a unique morphism f' which makes the following four diagrams commute*

$$\begin{array}{cccc}
 \begin{array}{ccc}
 A & \xrightarrow{\phi} & A' \\
 f \downarrow & & \downarrow f' \\
 B & \xrightarrow{\psi} & B'
 \end{array}
 &
 \begin{array}{ccc}
 A & \xrightarrow{\phi} & A' \\
 f \downarrow & & \downarrow f' \\
 B & \xleftarrow{\psi^{-1}} & B'
 \end{array}
 &
 \begin{array}{ccc}
 A & \xleftarrow{\phi^{-1}} & A' \\
 f \downarrow & & \downarrow f' \\
 B & \xrightarrow{\psi} & B'
 \end{array}
 &
 \begin{array}{ccc}
 A & \xleftarrow{\phi^{-1}} & A' \\
 f \downarrow & & \downarrow f' \\
 B & \xleftarrow{\psi^{-1}} & B'
 \end{array}
 \end{array}$$

Exercise 2

Prove that if functors F and G establish an equivalence between categories \mathcal{C} and \mathcal{D} , then they form an adjoint pair. You can proceed by replacing one of the originally specified natural isomorphisms by a new well chosen unit or counit.

¹This assumption is added for convenience.

Homework The following exercises will not be discussed in class and can be handed in until 7/01/2026. They are somewhat longer than exercises from previous weeks. Feel free to only hand in partial answers or to ask for more details by email.

Exercise 1

Fix a field \mathbb{k} . Let P be a finite poset. We call a functor $P \rightarrow \text{Vect}_{\mathbb{k}}^{fd}$ a finite dimensional representation of the poset P . We denote by $\text{Rep}(P, \mathbb{k})$ the category whose objects are the representations of P and the morphisms are natural transformations between these representations. The incidence algebra $\mathcal{I}(P)$ of P is the finite dimensional \mathbb{k} -algebra whose basis as a \mathbb{k} vector space is formed of the relations $(x \leq y)$ between elements in P and whose multiplication is defined as follows:

$$(x \leq y) \cdot (z, t) = \begin{cases} (x, t) & \text{if } y = z \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

Prove that the category of left modules over $\mathcal{I}(P)$ is equivalent to the category $\text{Rep}(P, \mathbb{k})$.

Exercise 2

Let $F : \mathcal{C} \rightarrow \mathcal{D}$ be a functor and $K : I \rightarrow \mathcal{C}$ a diagram.

- We say that F preserves the limit of K if when the limit L of K exists in \mathcal{C} and $F(L)$ is the limit of the diagram FK in \mathcal{D} ;
- We say that F reflects the limit of K if when there exists an object L in \mathcal{C} such that $F(L)$ is the limit of FK in \mathcal{D} then L is the limit of K in \mathcal{C} .
- We say that F creates limit of K if when the limit of FK exists in \mathcal{D} there exists L in \mathcal{C} which is the limit of K and whose image under F is the limit of \mathcal{D} .

- Give the dual definitions for colimits
- Prove that an equivalence of categories preserves reflects and creates all limits and colimits.

Exercise 3

Suppose $F : \mathcal{C} \rightarrow \text{Set}$ is equivalent to $G : \mathcal{D} \rightarrow \text{Set}$ in the sense that there is an equivalence of categories $H : \mathcal{C} \rightarrow \mathcal{D}$ so that GH and F are naturally isomorphic.

- If G is representable, then is F representable?
- If F is representable, then is G representable?

Exercise 4

Use the General Adjoint Functor Theorem to prove that the inclusion $\text{Haus} \rightarrow \text{Top}$ of the full subcategory of Hausdorff spaces into the category of all spaces has a left adjoint. The left adjoint carries a space to its “largest Hausdorff quotient.”