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1 Summary of the previous week

Fix C a category and I a small category. Let CI denote the category of functors
from I to C. For a morphism α in the category I we denote by dom(α) its
domain and by codom(α) its codomain. We call a functor F : I → C a diagram.
In previous lectures we introduced the functors of Cone(−, F ) : C → Set and
Cocone(F,−) : C → Set. The first one is contravariant and the second is
covariant. We also defined the limit limI F of the diagram F to be, when it
exists, in one of the following equivalent ways:

1. the representative of the functor Cone(−, F ) along with a universal ele-
ment in Cone(limI F, F );

2. A terminal object in the category of elements of the functor Cone(−, F ).
Concretely, this category has cones for over F for objects and maps that
commute with the legs of the cones for morphisms.

Dually, the colimit colimI F of the diagram F when it exists is

1. The representative of the functor Cone(F,−) with a universal element in
Cocone(F, limI F );

2. An Initial object in the category of elements of the functor Cone(F,−).
Again, this category has ocones for under F for objects and maps that
commute with the legs of the cocones for morphisms.

In other words, when they exist, limits and colimits are a special case of
universal properties for contravariant or covariant functors respectively.

Question 1. What is your favourite point of view to describing limits and
colimits? Is it one of the above or do you have another source of intuition?

Definition 1. We say that a category is complete (resp. cocomplete) if admits
all small limits (resp. colimits)

In the previous lecture we showed that the category of sets admits all small
limits. We illustrate this result with a concrete example, giving as many details
as we can.
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2 Products and coproducts of sets

Products, (respectively co-products) are the limits (resp. colimits) over dia-
gramss of shape

I = • •
In the category of sets, they correspond to cartesian products (resp. disjoint
unions) of sets. Let X1 and X2 be two sets. The diagram below shows how
X1 ×X2 fits in a cone over a diagram F : I → Set which sends one object of I
to X1 and the other to X2.

X1

X1 ×X2

X2

π1

π2

Here the maps π1 and π2 are the familiar projection maps. The fact thatX1×X2

along with the legs of this cone is the limit over the diagram F follows from the
observation that any tuple of morphisms with the same source X and targets
X1 and X2 define in a unique way a morphism from X to X1 ×X2 as follows.

Cone(X,F ) ∼= Set(X,X1)× Set(X,X2)
∼−→ Set(X,X1 ×X2)

(f1, f2) 7→ (f : x 7→ (f1(x), f2(x))).

This isomorphism illustrates the first point of view for the limit. To see the
limit as a terminal object in the category of cones over F it is customary to
rewrite the above bijection as a diagram as follows.

X1

X X1 ×X2

X2

f1

f2

∃!f

π1

π2

Similarly, X1

⊔
X2 fits in a natural cocone under the same diagram where the

legs of the cocone are the canonical inclusions.

X1

X1

⊔
X2

X2

i1

i2
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Then the colimit nature of X1

⊔
X2 is either expressed by the isormorphism

of functors

Cocone(F,X) ∼= Set(X1, X)× Set(X2, X)
∼−→ Set(X2

⊔
X2, X)

(f1, f2) 7→ (f : x 7→ fi(x) if x ∈ Xi).

or by the following diagram.

X1

X1

⊔
X2 X

X2

i1

f1

∃!f

i2

f2

Remark 2. In the category of vector spaces over a field k, products and co-
products coincide, forming so called ”biproducts”. This will be discussed later
when we encounter the notion of categories enriched in other categories.

Definition 3. A limit of a diagram of shape • ⇒ • is called an equaliser.
Dually, a colimit of a diagram of the same shame is called a coequaliser.

The above constructions of products and coproducts extend to products and
coproducs over a small category I whose set of objects has arbitrary cardinal.

Theorem 4. The category of sets is complete and cocomplete. Moreover, lim-
its (resp. colimits) can be computed using only products and equalisers (resp.
coproducts and coequalisers). More precisely, if F : I → Set is a diagram over
a small category I, then

• the limit of F exist and is the equaliser of the following diagram

Πi∈IF (i)
d

⇒
c
Πα∈IF (codom(α)).

In this equation, α denotes a morphism in the category I, the map c is
defined by c((ai)i ∈ I) = (acodom(α))α∈I and the map d is defined by
d((ai)i ∈ I) = (F (α)(adom(α)))α∈I .

• the colimit of F exist and is the coequaliser of the following diagram

Πα∈IF (dom(α))
d

⇒
c
Πi∈IF (i).

In this equation, α denotes a morphism in the category I, the map c is
defined by c(a) = F (α)(a) for a ∈ dom(α) and the map d is defined by
d(α) = α.

For a proof of this result we direct the reader to theorem 3.2.13 and 3.4.12
of the book Categories in Context by Emily Riehl that we will refer to as the
book in the rest of these notes.
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3 Limits and functors

In this section we collect two useful results about functors that are either well
behaved with regards to limits or that are defined using limits. Both results
admit dual version with colimits.

Definition 5. We say that a covariant functor G : C → D preserves limits if it
sends the limit of all diagrams F : I → C to the limit of the diagram GF : I → D
whenever the limit of F exists in C.

Theorem 6. As before, let I be a small category and let C be a locally small
category. Suppose that the limit of the diagram F : I → C exists. Then we have
the following isomorphism

C(X, lim
I

F ) ∼= lim
I

C(X,F (−)).

In other words, C(X,−) preserves limits

This theorem gives us the opportunity to point how the limits in the category
of sets play an important role for limits in locally small categories in general.
See Theorem 3.4.7 of the book for the dual of this theorem.

Proof. We want to show that C(X, limI F ) is the limite of the I shaped dia-
gram C(X,F (−)). We choose to do so by constructing a universal cone over
C(X,F (−)) with summit C(X, limI F ). Denote λi : limI F → F (i) the legs of
the universal cone over the diagram F . For each i ∈ I consider the maps

(λi)⋆ : C(X, lim
I

F ) → C(C,F (i))

f 7→ λi ◦ f.

Recall that the arrows of the diagram C(X,F (−)) are precisely the post com-
position maps F (α)⋆ for each arrow α in the category I. Then we have

F (α)⋆ ◦ (λdom(α))⋆ = (F (α) ◦ λdom(α))⋆ = (λcodom(α))⋆.

Suppose we have cone with summit S over C(X,F (−)) with legs

gi : S → C(X,F (i)).

Note that for each element s of S, the collection of maps (gi(s) : X → F (i))
defines a cone with summit X over the diagram F . Using the universal property
of the limite of F we get a unique map g(s) : X → limI F . We have thus defined
a map g : S → C(X, limI F ) which fits in the following familly of commutative
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diagrams.

C(X,F (j))

S C(X, limI F )

C(X,F (i))

gj

gi

∃!g

(λj)⋆

(λi)⋆

F (α)⋆

It remains to argue that g is unique. This follows from the universal property
of limI F

Proposition 1. Suppose that C admits all J shapped limits. Then any choice
of a limit for each diagram can be extended into a functor limI : CI → C

Proof. We want to construct a functor as follows

CI → C
F 7→ lim

I
F

(α : F → G) 7→ (lim
I

F → lim
I

G)

where limI F is the limit we have arbitrarily chosen for each diagram F . All we
need to do is explain what the morphism fα is, given a natural transformation
α : F → G between two diagrams over I. Denote by λi the legs of the universal
cone over F with summit limI F . Because α is a natural transformation, we
can construct a cone with summit limI F over G whose legs are α(i) ◦ λi for
each object i of I. By the universal property of limI G we obtain a unique map
fα : limI F → limI G that commutes with the legs of the cones. It remains to
check that this assignment is compatible with composition of morphisms i.e.
that given two natural transformations α : F → G and β : G → H, we have

fβ◦α = fβ ◦ fα.

One can check that both these morphisms fit in a diagram whose legs are β(i) ◦
α(i) ◦ λi. They are thus equal by the universal property of limI H.

As an exercise, turn the proof above into a sequence of diagrams. Note also
that it is quite rare that arbitrary choices can be made functorial. We conclude
this section by pointing out that limits and colimits are always unique up to
unique ismorphism. See Exercise 1 of the third exercise sheet.

4 Double Limits

Let I and J be small categories. We define the product of categories I × J to
be the small category whose
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• object set is Obj(I × J) = Obj(I)×Obj(J).

• morphisms are I × J((i, j), (i′, j′)) = I(i, i′)× J(j, j′).

Remark 7. In the construction of the product I × J we used products of the
category of sets. the resulting construction is a product in the category of
categories Cat. In fact one can show that both Cat and CAT are complete and
cocomplete. See section Proposition 3.5.6 of the book.

Consider a diagram F : I × J → C. Suppose that for all object i of the
category I, the limit of the diagram F (i,−) : J → C exits. Using the universal
properies of each of these limits, we get a diagram limJ F (−, j) : I → C whose
limit, if it exists, we denote limi∈I limj∈J F (i, j). Under the corresponding nec-
essary assumptions we can also construct limj∈J limi∈I F (i, j).

Theorem 8. If limi∈I limj∈J F (i, j) and limj∈J limi∈I F (i, j) exist, then they
are ismorphic and define the limit limI×J F .

Proof. First, by the Yoneda Lemma, the claim is equivalent to the natural
isomorphisms

C(X, lim
i∈I

lim
j∈J

F (i, j)) ∼= C(X, lim
j∈J

lim
i∈I

F (i, j)) ∼= C(X, lim
I×J

F ).

Next by Proposition 6 we have the following isomorphisms of sets

C(X, lim
i∈I

lim
j∈J

F (i, j)) ∼= lim
i∈I

C(X, lim
j∈J

F (i, j)) ∼= lim
i∈I

lim
j∈J

C(X,F (i, j)).

The previous observation is symmetric in I and J . Hence, because C is locally
small, it suffices to prove the current result in the category of set which we do
next

Remark 9. The Yoneda Lemma requires the isomorphisms to be functorial in
the variable X. The isomorphism in the second step is functorial as a conce-
quence of it being the unique isomorphism between representatives of universal
properties. A similar arguement holds for the isomorphisms in the next step.

Theorem 10. Consider a diagram F : I × J → Set such that

lim
i∈I

lim
j∈J

F (i, j) and lim
j∈J

lim
i∈I

F (i, j)

exist. Then they are isomorphic and define the limit limI×J F .

Proof. It suffices to prove that limi∈I limj∈J F (i, j) is the limit of the diagram F
the case of limj∈J limi∈I F (i, j) being symmetric. Let (fi)∈I be a cone over the
I-indexed diagram whose vertices are the limj∈J F (i, j) with summit X. Then
for each object i of I, we get a cone with summit X, denoted (fi,j)j∈J over the
J-indexed diagram whose object are the F (i, j). A computation shows that the
collection of maps (fi,j)(i,j)∈I×J defines a cone over the category I × J with
summit X. Any morphism α : (i, j) → (i′, j′) ∈ I × J is a tuple (f, g) where
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f : i → i′ is a morphism of the category I and g : j → i′ of the category J .
Then the following equality hold

F (α) ◦ fi,j = F (f, g) ◦ fi,j = F (f, idj′) ◦ F (idi, g) ◦ fi,j
= F (f, idj′)fi,j′ = fi′,j′ .

Conversely, any cone (fi,j)i,j over F restricts to cones over the J-shaped di-
agrams we get by fixing an element i ∈ I. By the universal property of the
J-shaped limit we get maps fi which form a cone over the I-shaped diagram
whose vertices are the limj∈J F (i, j) We have shown that limi∈I limj∈J F (i, j)
and limj∈J limi∈I F (i, j) satisfy the same universal property. They are thus
isomorphic and this concludes the proof

Dually, colimits also commute with colimits.

5 Putting limits and colimits together

The main take-away of this section is that limits and colimits do not commute
in general but can be compared with a canonical morphism.

Lemma 11. Let F : I × J → C be a bifunctor. Suppose that limj∈J F (−, j),
colimi∈I limj∈J F (i, j), colimi∈I F (−, j) and limj∈J colimi∈I F (i, j) exist. Then
there is a canonical map

κ : colim
i∈I

lim
j∈J

F (i, j) → lim
j∈J

colim
i∈I

F (i, j).

Proof. Consider the composition of maps indexed by objects in (i, j) ∈ I × J

κi,j : lim
j′∈J

F (i, j)
πi,j−−→ F (i, j)

ii,j−−→ colim
i′∈I

F (i′, j).

By the magic of the colimits, i.e for fixed i these morphisms define a cone of
shape J , this lifts to a morphism

κi : lim
j′∈J

F (i, j)
πi,j−−→ F (i, j)

ii,j−−→ lim
j∈J

colim
i′∈I

F (i′, j).

In turn, by the magic of the limits, i.e these morphisms define a cocone of shape
I this lifts to the desired morphism κ.

We did not go throught he details of the computations in this proof. They
consist and showing that the legs of the cones and cocones we are considering
indeed commute with the arrows of the diagrams. They do so because the maps
πi,j and ii,j are themselves legs of a cone and a cocone and because the legs of
the diagrams whose objects are the partial limits and colimits are themselves
obtained by the universal properties and commute by construction with the
correct πi,j and ii,j . We encourage the reader to fill in the details.
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Example 12 (limits of sequences with categorical (co)limits). Denote the ex-
tended real line R = R∪{−∞,+∞} which we consider as a poset category. Let
X be a set and f : X → R a function. We will see f as a diagram of shape X in
R by considering X as a discrete category, i.e a category whose only morphisms
are the identity morphisms. The limits and colimits of such diagrams then exist
and are respectively infx∈X(f(x)) and supx∈X(f(x)).

We can use this setting to describe limits of sequences. Let x = (xn)n∈N be

a sequence of real numbers. It can also be written as a map N x−→ R. Consider
the diagram

F : N× N +−→ N x−→ R.

Then we have

colim
n

lim
m

xn+m = sup
n≥0

inf
m≥0

xn+m = lim inf
n→+∞

xn

lim
n

colim
m

xn+m = inf
n≥0

sup
m≥0

xn+m = lim sup
n→+∞

xn.

By Lemma 11 we have

lim inf
n

xn ≤ lim sup
n

xn

and we know that the equality holds if and only if x admits a limit.

We thus have many examples where limits and colimits do not commute. To
conclude this section we give, without proof, a setting in which limits commute
with certain colimits just to show that such things exist.

Definition 13. A small category I is filtered if there is a cone under every
finite diagram in I.

Theorem 14. Filtered colimits commute with finite limits in Set.

8


	Summary of the previous week
	Products and coproducts of sets
	Limits and functors
	Double Limits
	Putting limits and colimits together

