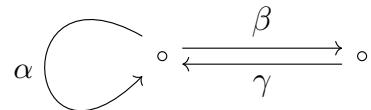


Exercise session: week 8

December 3, 2024

Let R denote a commutative ring; \mathbb{k} a field and A a k -algebra. Exercises marked with \star can be handed in for grading.

Exercise 1. Let $Q = (Q_0, Q_1)$ be the quiver



1. Which of the following ideals of $\mathbb{k}Q$ is admissible?

$$\begin{array}{ll} I_1 = \langle \alpha^2 - \beta\gamma, \gamma\beta - \gamma\alpha\beta, \alpha^4 \rangle, & I_2 = \langle \alpha^2 - \beta\gamma, \gamma\beta, \alpha^4 \rangle, \\ I_3 = \langle (\gamma\beta)^4, \alpha^3 \rangle, & I_4 = \langle \beta\gamma\alpha - \beta\gamma, (\beta\gamma)^2, \alpha^2 \rangle \end{array}$$

2. Out of the admissible ideals, which pairs yield isomorphic quotients of the algebra $\mathbb{k}Q$? The answer might depend on the characteristic of the field \mathbb{k} .

Exercise 2. Describe, up to isomorphism, all basic three dimensional algebras.

Exercise 3. Let Q be a finite quiver. Show that:

1. $\mathbb{k}Q$ is semisimple if and only if $|Q_1| = 0$,
2. $\mathbb{k}Q$ is simple if and only if $|Q_0| = 1$ and $|Q_1| = 0$.

Of moreover Q is connected, show that:

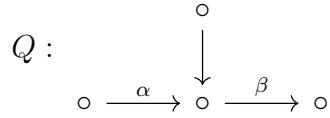
3. $\mathbb{k}Q$ is local only if $|Q_0| = 1$ and $|Q_1| = 0$.
4. $\mathbb{k}Q$ is commutative if and only if $|Q_0| = 1$ and $|Q_1| \leq 1$.

Exercise 4. Let A be an algebra such that $\text{rad}^2 A = 0$. Show that if $\{e_1, \dots, e_n\}$ is a complete set of primitive orthogonal idempotents then $e_i A e_j \neq 0$ if and only if there exists an arrow $i \rightarrow j$ in Q_A .

Exercise 5. Write a bound quiver presentation of each of the following algebras:

$$\begin{pmatrix} \mathbb{k} & 0 & 0 & 0 & 0 \\ \mathbb{k} & \mathbb{k} & 0 & 0 & 0 \\ \mathbb{k} & 0 & \mathbb{k} & 0 & 0 \\ \mathbb{k} & 0 & \mathbb{k} & \mathbb{k} & 0 \\ \mathbb{k} & \mathbb{k} & \mathbb{k} & \mathbb{k} & \mathbb{k} \end{pmatrix}, \quad \begin{pmatrix} \mathbb{k} & 0 & 0 & 0 & 0 \\ \mathbb{k} & \mathbb{k} & 0 & 0 & 0 \\ \mathbb{k} & 0 & \mathbb{k} & 0 & 0 \\ \mathbb{k} & 0 & 0 & \mathbb{k} & 0 \\ \mathbb{k} & \mathbb{k} & \mathbb{k} & \mathbb{k} & \mathbb{k} \end{pmatrix}, \quad \begin{pmatrix} \mathbb{k} & 0 & 0 & 0 & 0 \\ \mathbb{k} & \mathbb{k} & 0 & 0 & 0 \\ \mathbb{k} & \mathbb{k} & \mathbb{k} & 0 & 0 \\ \mathbb{k} & 0 & 0 & \mathbb{k} & 0 \\ \mathbb{k} & \mathbb{k} & \mathbb{k} & \mathbb{k} & \mathbb{k} \end{pmatrix}.$$

* **Exercise 6.** Consider the quiver:



and the ideal $\langle \alpha\beta \rangle$. Describe the simple modules, the indecomposable projectives and the indecomposable injective modules over the algebra $\mathbb{k}Q/I$ using quiver representations.