

Exercise session: week 2

October 22, 2024

Let R denote a commutative ring; k a field and A a k -algebra. Exercises marked with \star can be handed in for grading.

Exercise 1. Let M , N and L be right A -modules. Check that the composition \circ ,

$$\begin{aligned} \text{Hom}_A(M, N) \times \text{Hom}_A(L, M) &\rightarrow \text{Hom}_A(L, N) \\ (h, g) &\mapsto h \circ g \end{aligned}$$

is k -bilinear.

\star **Exercise 2** (\otimes - Hom adjunction). Before attempting this exercise, we invite you to consult the definition of the tensor product functors in the notes (Example 1.39). Let M be an $A - B$ bimodule, let X be right A -module and let Y be a right B -module. Consider the following maps.

$$\begin{aligned} \text{Hom}_{\text{Mod } B}(X \otimes_A M, Y) &\longleftrightarrow \text{Hom}_{\text{Mod } A}(X, \text{Hom}_{\text{Mod } B}(M, Y)) \\ \Phi_{X,Y} : \quad f &\mapsto (x \mapsto (m \mapsto f(x \otimes m))) \\ (x \otimes m \mapsto \phi(x)(m)) &\longleftrightarrow \quad \phi \quad : \Psi_{X,Y} \end{aligned}$$

(i) Check that $\Phi_{X,Y}$ and $\Psi_{X,Y}$ are well defined

(ii) Show that $\Phi_{X,Y}$ and $\Psi_{X,Y}$ are inverse of one another

(iii) Let $\lambda : X \rightarrow X'$ be a morphism of right A -modules and $\mu : Y \rightarrow Y'$ be a morphism of left B modules. Show that the following diagrams commute.

$$\begin{array}{ccc} \text{Hom}_{\text{Mod } B}(X \otimes_A M, Y) & \xrightarrow{\Phi_{X,Y}} & \text{Hom}_{\text{Mod } A}(X, \text{Hom}_{\text{Mod } B}(M, Y)) \\ \downarrow & & \downarrow \\ \text{Hom}_{\text{Mod } B}(X \otimes_A M, Y') & \xrightarrow{\Phi_{X,Y'}} & \text{Hom}_{\text{Mod } A}(X, \text{Hom}_{\text{Mod } B}(M, Y')) \end{array} \quad (1)$$

$$\begin{array}{ccc} \text{Hom}_{\text{Mod } B}(X' \otimes_A M, Y) & \xrightarrow{\Phi_{X',Y}} & \text{Hom}_{\text{Mod } A}(X', \text{Hom}_{\text{Mod } B}(M, Y)) \\ \downarrow & & \downarrow \\ \text{Hom}_{\text{Mod } B}(X \otimes_A M, Y) & \xrightarrow{\Phi_{X,Y}} & \text{Hom}_{\text{Mod } A}(X, \text{Hom}_{\text{Mod } B}(M, Y)) \end{array} \quad (2)$$

where the vertical maps are obtained by applying the correct functors to the maps μ and λ respectively.

This shows that $- \otimes_A M$ and $\text{Hom}_B(M, -)$ form a pair of adjoint functors. You can find the general definition here for example.

Exercise 3. Let $f : A \rightarrow B$ be a morphism of algebras.

- (i) Let M be a right B -module. Show that, for all $m \in M$ and $a \in A$ setting $m \star a = m \cdot f(a)$ defines a right A -module structure on M .
- (ii) Using this operation, construct a functor $\text{Res} : \text{Mod } B \rightarrow \text{Mod } A$. We call this the restriction functor.
- (iii) Show that this functor is right adjoint to the functor

$$- \bigotimes_A B : \text{Mod } A \rightarrow \text{Mod } B.$$

This is the induction functor from A to B .

- (iv) From now on let B be $T_2(k)$, let A be the subalgebra of diagonal matrices of B and let f be the inclusion $A \rightarrow B$. Show that k^2 is an indecomposable module over B but that $\text{Res}(k^2)$ is not indecomposable over A .
- (v) Decompose B into indecomposable components as an A -module.

Exercise 4. Let $f : A \rightarrow B$ be a homomorphism of k -algebras.

- (i) Show that if f is surjective then $f(\text{rad } A) \subseteq \text{rad } B$.
- (ii) Find a counterexample when f is not surjective. *Hint: localise a polynomial algebra at a prime ideal and map it to its ring of fractions.*

Exercise 5. Let A be the polynomial k -algebra $k[t_1, t_2]$.

- (i) Recall that a ring said to be local if it has a unique maximal ideal. Prove that A is not local.
- (ii) Prove that the elements 0 and 1 are the only idempotents of A .
- (iii) Prove that the radical of A is zero.

* **Exercise 6.** Let A be the algebra $T_2(k)$ of lower triangular matrices in $M_2(k)$. Consider the two vector spaces $P_1 = \{[a_1, 0] | a_1 \in k\}$ and $P_2 = \{[a_1, a_2] | a_i \in k\}$.

- (i) Show that they have a right $T_2(k)$ -module structure.
- (ii) Show that the inclusion $\phi : P_1 \hookrightarrow P_2$ is a homomorphism of $T_2(k)$ modules.
- (iii) Cokernel of ϕ is a right $T_2(k)$ -module. We denote it S_2^1 . Describe it.
- (iv) Show that P_1, P_2 and S_2 are indecomposable modules.

¹The reason behind that choice will become apparent in the following weeks.

Exercise 7. The goal of this exercise is to show that right $T_2(k)$ -modules from the previous exercise P_1, P_2 and S_2 , are the only indecomposable finite dimensional right modules over $T_2(k)$. Let M be a right $T_2(k)$ module.

(i) Using the actions of the basis elements of $T_2(k)$, E_{11}, E_{22} and E_{21} decompose M into two subvector spaces linked by a linear map

$$V_2 \xrightarrow{f} V_1$$

(ii) As vector spaces, we can decompose V_1 as $\text{coker}(f) \oplus \text{Im}(f)$ and V_2 as $\ker(f) \oplus V'_2$. Show that $\text{coker}(f), \ker(f)$ and $\text{Im}(f) \oplus V'_2$ are sub representations of M .

(iii) Show that they are in direct sum.

(iv) Show that $\text{coker}(f) \cong (S_2)^{\dim \text{coker}(f)}$ as modules.

(v) Show that $\ker(f) \cong (P_1)^{\dim \ker(f)}$ as modules.

(vi) Show that $\dim \text{Im}(f) = \dim V'_2$.

(vii) Show that $\text{Im}(f) \oplus V'_2 \cong P_2^{\dim \text{Im}(f)}$ as modules.

(viii) Conclude that M is indecomposable if and only if $M \cong P_1, M \cong P_2$ or $M \cong S_2$.

★ **Exercise 8.** Let \mathfrak{S}_3 be the symmetric group on three elements and let A be its group algebra $k\mathfrak{S}_3$.

(i) Show that setting $g \cdot x = x$ for all $g \in \mathfrak{S}_3$ and $x \in k$ defines a left A module structure on k . We call this the trivial module of A .

(ii) Denote $sn : \mathfrak{S}_3 \rightarrow \{-1, 1\}$ the sign map on \mathfrak{S}_3 . Show that setting $g \cdot x = sn(g) \cdot x$ defines another left A -module structure on k .

(iii) Recall that for each permutation $g \in \mathfrak{S}_3$ we can associate a permutation matrix defined $\sum_{i=1}^3 E_{i\sigma(i)}$. Show that sending g to its permutation matrix P_g defines a left A -module structure on the subvector space $\{(x_1, x_2, x_3) | x_1 + x_2 + x_3 = 0\}$ of k^3 .

(iv) Suppose the field k is \mathbb{C} . Show that these three modules are indecomposable.

(v) What can happen when k is not \mathbb{C} ?

Next week we will show that these are the only indecomposable left modules over \mathbb{C} and that they are even irreducible.