

Exercise session: week 3

October 30, 2024

Let R denote a commutative ring; k a field and A a k -algebra. Exercises marked with \star can be handed in for grading.

\star **Exercise 1.** Let M and N be right A -modules. Let $f : M \rightarrow N$ be a right A -module homomorphisms.

1. Show that $\text{rad}(M \oplus N) \cong \text{rad } M \oplus \text{rad } N$.
2. Show that $f(\text{rad } M) \subseteq \text{rad } N$.
3. Give an example where the above inequality is strict.

\star **Exercise 2.** Let $A = M_n(k)$ with $n > 1$

1. Find orthogonal idempotents in A .
2. Find primitive idempotents in A .
3. Think about whether or not you have found all of them.

\star **Exercise 3.** Consider the set of matrices

$$\begin{pmatrix} \mathbb{k} & 0 & 0 \\ \mathbb{k} & \mathbb{k} & \mathbb{k} \\ \mathbb{k} & \mathbb{k} & \mathbb{k} \end{pmatrix}$$

1. Show that it is a subalgebra of $M_n(\mathbb{k})$. Write it A .
2. Show that E_{11} , E_{22} and E_{33} form a complete set of idempotents.
3. Show that the projectives $E_{22} \cdot A$ and $E_{33} \cdot A$ are isomorphic. *Indication:* consider left multiplication by well chosen matrices $E_{i,j}$ that belong to A .
4. Show that $\text{Hom}_A(E_{11} \cdot A, E_{22} \cdot A) = 0$. Deduce that $E_{11} \cdot A \not\cong E_{22} \cdot A$.
5. Set. $P = E_{11} \cdot A \oplus E_{22} \cdot A$. Compute $\text{End}_A(P)$. *Indication:* Think in terms of matrices, use the previous questions and compute $\text{Hom}_A(E_{22} \cdot A, E_{11} \cdot A)$.

Exercise 4. Let G be a finite group. Let k be a field. Suppose that $|G|$ is invertible in k . Prove that the group algebra kG is semisimple (Maschke's theorem). Here is suggestion for the proof ¹. Let M be a right kG -module. We want to show that every kG -submodule N of M has a complement. Write e the element of $\text{End}_k(M)$ which is a projection onto the subvector space N . Define $e' = \frac{1}{|G|} \sum_{g \in G} g \cdot e \cdot g^{-1}$

1. Justify that e' is well defined and that it is an idempotent of $\text{End}_k(M)$.
2. Show that e' is an element of $\text{End}_{kG}(M)$, i.e. that it commutes with the action of G . It follows that $(1 - e')M$ is a submodule of M .
3. Show that $x \in N$ is an element of N if and only if that $e' \cdot x = x$.
4. Conclude the proof.

Exercise 5. In this exercise we give a guide to the proof of the Artin-Wedderburn Theorem. Let A be a finite dimensional algebra over an algebraically closed field k . The theorem states that the following assertions are equivalent.

- (a) The right A -module A_A is semisimple.
- (b) Every right A -module is semisimple.
- (c) The left A -module ${}_A A$ is semisimple.
- (d) Every left A -module is semisimple.
- (e) $\text{rad } A = 0$.
- (f) There exist positive integers m_1, \dots, m_s and a k -algebra isomorphism

$$A \cong M_{m_1}(k) \times \cdots \times M_{m_s}(k)$$

1. Show that

$$\begin{aligned} \text{End}_{\text{Mod } A}(A) &\rightarrow A^{op} \\ \phi &\mapsto \phi(1_A) \end{aligned}$$

is an isomorphism of k -algebras.

2. Suppose A is finite dimensional semisimple algebra. Using Lemma 1.41, write $\text{End}_{\text{Mod } A}(A)$ as a direct sum of homomorphism spaces between simple modules.
3. If S and S' are simple module, what are the possible values of $\text{Hom}_{\text{Mod } A}(S, S')$?
4. Deduce the implication $(a) \Rightarrow (d)$ of the theorem.
5. Suppose A satisfies condition (d) . Show that $\text{rad } A = 0$.

¹Taken from these notes

6. Suppose that $\text{rad } A = 0$. Let S be a simple right submodule of A . Show that there exists a maximal right ideal M of A such that $S \oplus M = A$.
7. Deduce that, when $\text{rad } A = 0$, the socle of A is a direct summand of A .
8. Deduce that $(c) \Rightarrow (a)$.
9. Using Lemma 1.43 show that $(a) \Rightarrow (b)$.

Exercise 6. Prove or read the proof of the Jordan–Hölder theorem.