

Exercise session: week 4

November 5, 2024

Let R denote a commutative ring; k a field and A a k -algebra. Exercises marked with \star can be handed in for grading.

Exercise 1. Show that a subset I of A is a (left, right, -) ideal of A if and only if it is a (left, right, -) A -submodule.

\star **Exercise 2.** Consider the set of matrices

$$\begin{pmatrix} \mathbb{k} & 0 & 0 \\ \mathbb{k} & \mathbb{k} & \mathbb{k} \\ \mathbb{k} & \mathbb{k} & \mathbb{k} \end{pmatrix}$$

1. Show that it is a subalgebra of $M_n(\mathbb{k})$. Write it A .
2. Show that E_{11} , E_{22} and E_{33} form a complete set of primitive idempotents.
3. Show that the modules $E_{22} \cdot A$ and $E_{33} \cdot A$ are isomorphic. *Indication:* consider left multiplication by well chosen matrices $E_{i,j}$ that belong to A .
4. Show that $\text{Hom}_A(E_{22} \cdot A, E_{11} \cdot A) = 0$. Deduce that $E_{11} \cdot A \not\cong E_{22} \cdot A$.
5. Set $P = E_{22} \cdot A \oplus E_{11} \cdot A$. Compute $\text{End}_A(P)$. *Indication:* Think in terms of matrices, use the previous questions and compute $\text{Hom}_A(E_{11} \cdot A, E_{22} \cdot A)$.

\star **Exercise 3.** Let $r : M \rightarrow N$ be a homomorphism of right A -modules. Show that r admits a section if and only if r is surjective and $M = L \oplus \ker r$ where L is a submodule of M .

Exercise 4. Let $u : L \rightarrow M$ be a homomorphism of right A -modules. Show that u admits a retraction if and only if u is injective and $M = \text{Im}(u) \oplus N$ where N is a submodule of M .

Exercise 5. Suppose that the sequence $0 \rightarrow L \xrightarrow{u} M \xrightarrow{r} N \rightarrow 0$ of right A -modules is exact. Prove that the homomorphism u admits retraction if and only if r admits as section.

Exercise 6. Let $Z(A)$ denote the centre of A . Show that the following propositions are equivalent.

1. The algebra A is connected.
2. The algebra $Z(A)$ is connected.
3. The elements 0 and 1 are the only central idempotents of A .

Exercise 7. Let e be a primitive idempotent of A . Show that the algebra eAe is local.