

Exercise session: week 6

November 19, 2024

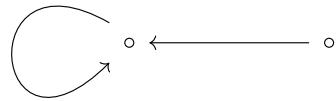
Let R denote a commutative ring; k a field and A a k -algebra. Exercises marked with \star can be handed in for grading.

Exercise 1. For each of the following quivers, give a basis of the path algebra, then write the multiplication table of this basis and finally write the path algebra as a triangular matrix algebra: 1. $\circ \xleftarrow{\quad} \circ \xrightarrow{\quad} \circ$; 2. $\circ \xrightarrow{\quad} \circ \xleftarrow{\quad} \circ$; 3. $\circ \xleftarrow{\quad} \circ \xleftarrow{\quad} \circ$. More examples can be found in the book. Is it always possible to write a path algebra as an upper triangular matrix algebra?

\star **Exercise 2.** A ring is called hereditary if its minimal projective resolutions have length at most 1.

1. Show that the algebra $\mathbb{k}[t]/(t^3)$ is not hereditary.
2. Let Q be a finite quiver with no cycles. Show that $\mathbb{k}Q$ is hereditary.

\star **Exercise 3.** Let $A = \begin{pmatrix} \mathbb{k}[t] & 0 \\ \mathbb{k}[t] & \mathbb{k} \end{pmatrix}$ and view A as a \mathbb{k} -algebra with the usual matrix multiplication. Show that $A \cong \mathbb{k}Q$ where Q is the quiver



Exercise 4. Let P be a finite set equipped with a partial order relation \leq . Let x, y be elements of P . We say that $x \leq y$ is a *covering relation* if the interval $[x, y]$ of the poset contains exactly two elements. Define the *Hasse diagram* of the poset (P, \leq) to be the directed graph with vertices the elements of P and arrows from x to y if and only if the relation $x \leq y$ holds and is a covering relation.

1. Consider the set $\{1, 2, 3, 4, 6, 12\}$ ordered by the relation $x \leq y$ if and only if x divides y . Draw its Hasse diagram. Compute its incidence algebra.

2. Show that the quiver algebra $\mathbb{k}H$ surjects onto the incidence algebra of the poset (P, \leq) . Give an explicit morphism of algebras.
3. Give a set of generators for the kernel of this map using paths in the Hasse diagram.